首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lithium–sulfur (Li–S) batteries are highly regarded as the next-generation energy-storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg−1. Sulfurized polyacrylonitrile (SPAN) is considered a promising sulfur cathode to substitute carbon/sulfur (C/S) composites to afford higher Coulombic efficiency, improved cycling stability, and potential high-energy-density Li–SPAN batteries. However, the instability of the Li-metal anode threatens the performances of Li–SPAN batteries bringing limited lifespan and safety hazards. Li-metal can react with most kinds of electrolyte to generate a protective solid electrolyte interphase (SEI), electrolyte regulation is a widely accepted strategy to protect Li-metal anodes in rechargeable batteries. Herein, the basic principles and current challenges of Li–SPAN batteries are addressed. Recent advances on electrolyte regulation towards stable Li-metal anodes in Li–SPAN batteries are summarized to suggest design strategies of solvents, lithium salts, additives, and gel electrolyte. Finally, prospects for future electrolyte design and Li anode protection in Li–SPAN batteries are discussed.  相似文献   

2.
Of the various beyond‐lithium‐ion battery technologies, lithium–sulfur (Li–S) batteries have an appealing theoretical energy density and are being intensely investigated as next‐generation rechargeable lithium‐metal batteries. However, the stability of the lithium‐metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long‐term stability of Li–S batteries. Herein, we report lithium azide (LiN3) as a novel electrolyte additive for all‐solid‐state Li–S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state‐of‐the‐art additive lithium nitrate (LiNO3).  相似文献   

3.
The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next‐generation energy‐storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li–S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid‐liquid‐solid multi‐phase conversion, the electrolyte amount plays a primary role in the practical performances of Li–S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li–S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high‐sulfur‐loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li–S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution–precipitation conversion and the solid–solid multi‐phasic transition. Finally, prospects of future lean‐electrolyte Li–S battery design and engineering are discussed.  相似文献   

4.
Lithium–sulfur (Li–S) batteries have shown great potential as high energy‐storage devices. However, the stability of the Li metal anode is still a major concern. This is due to the formation of lithium dendrites and severe side reactions with polysulfide intermediates. We herein develop an anode protection method by coating a Nafion/TiO2 composite layer on the Li anode to solve these problems. In this architecture, Nafion suppresses the growth of Li dendrites, protects the Li anode, and prevents side reactions between polysulfides and the Li anode. Moreover, doped TiO2 further improves the ionic conductivity and mechanical properties of the Nafion membrane. Li–S batteries with a Nafion/TiO2‐coated Li anode exhibit better cycling stability (776 mA h g?1 after 100 cycles at 0.2 C, 1 C=1672 mA g?1) and higher rate performance (787 mA h g?1 at 2 C) than those with a pristine Li anode. This work provides an alternative way to construct stable Li anodes for high‐performance Li–S batteries.  相似文献   

5.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

6.
Lithium–sulfur (Li–S) batteries are regarded as promising high-energy-density energy storage devices. However, the cycling stability of Li–S batteries is restricted by the parasitic reactions between Li metal anodes and soluble lithium polysulfides (LiPSs). Encapsulating LiPS electrolyte (EPSE) can efficiently suppress the parasitic reactions but inevitably sacrifices the cathode sulfur redox kinetics. To address the above dilemma, a redox comediation strategy for EPSE is proposed to realize high-energy-density and long-cycling Li–S batteries. Concretely, dimethyl diselenide (DMDSe) is employed as an efficient redox comediator to facilitate the sulfur redox kinetics in Li–S batteries with EPSE. DMDSe enhances the liquid–liquid and liquid–solid conversion kinetics of LiPS in EPSE while maintains the ability to alleviate the anode parasitic reactions from LiPSs. Consequently, a Li–S pouch cell with a high energy density of 359 Wh kg−1 at cell level and stable 37 cycles is realized. This work provides an effective redox comediation strategy for EPSE to simultaneously achieve high energy density and long cycling stability in Li–S batteries and inspires rational integration of multi-strategies for practical working batteries.  相似文献   

7.
Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long-cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra-thin Li anodes and high-S-loading cathodes deliver 146 cycles and a 338 Wh kg−1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long-cycling Li−S batteries.  相似文献   

8.
《中国化学快报》2022,33(10):4421-4427
Lithium–sulfur (Li–S) batteries exhibit outstanding energy density and material sustainability. Enormous effects have been devoted to the sulfur cathode to address redox kinetics and polysulfide intermediates shuttle. Recent attentions are gradually turning to the protection of the lithium metal anodes, since electrochemical performances of Li–S batteries are closely linked to the working efficiency of the anode side, especially in pouch cells that adopt stringent test protocols. This Perspective article summarizes critical issues encountered in the lithium metal anode, and outlines possible solutions to achieve efficient working lithium anode in Li–S batteries. The lithium metal anode in Li–S batteries shares the common failure mechanisms of volume fluctuation, nonuniform lithium flux, electrolyte corrosion and lithium pulverization occurring in lithium metal batteries with oxide cathodes, and also experiences unique polysulfide corrosion and massive lithium accumulation. These issues can be partially addressed by developing three-dimensional scaffold, exerting quasi-solid reaction, tailoring native solid electrolyte interphase (SEI) and designing artificial SEI. The practical evaluation of Li–S batteries highlights the importance of pouch cell platform, which is distinguished from coin-type cells in terms of lean electrolyte-to-sulfur ratio, thin lithium foil, as well as sizable total capacity and current that are loaded on pouch cells. This Perspective underlines the development of practically efficient working lithium metal anode in Li–S batteries.  相似文献   

9.
Safety concerns pose a significant challenge for the large‐scale employment of lithium–sulfur batteries. Extremely flammable conventional electrolytes and dendritic lithium deposition cause severe safety issues. Now, an intrinsic flame‐retardant (IFR) electrolyte is presented consisting of 1.1 m lithium bis(fluorosulfonyl)imide in a solvent mixture of flame‐retardant triethyl phosphate and high flashpoint solvent 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl (1:3, v/v) for safe lithium–sulfur (Li?S) batteries. This electrolyte exhibits favorable flame‐retardant properties and high reversibility of the lithium metal anode (Coulombic efficiency >99 %). This IFR electrolyte enables stable lithium plating/stripping behavior with micro‐sized and dense‐packing lithium deposition at high temperatures. When coupled with a sulfurized pyrolyzed poly(acrylonitrile) cathode, Li?S batteries deliver a high composite capacity (840.1 mAh g?1) and high sulfur utilization of 95.6 %.  相似文献   

10.
Lithium–sulfur (Li‐S) batteries have recently received great attention because they promise to provide energy density far beyond current lithium ion batteries. Typically, Li‐S batteries operate by conversion of sulfur to reversibly form different soluble lithium polysulfide intermediates and insoluble lithium sulfides through multistep redox reactions. Herein, we report a functional electrolyte system incorporating dimethyl disulfide as a co‐solvent that enables a new electrochemical reduction pathway for sulfur cathodes. This pathway uses soluble dimethyl polysulfides and lithium organosulfides as intermediates and products, which can boost cell capacity and lead to improved discharge–charge reversibility and cycling performance of sulfur cathodes. This electrolyte system can potentially enable Li‐S batteries to achieve high energy density.  相似文献   

11.
Lithium‐metal anodes are recognized as the most promising next‐generation anodes for high‐energy‐storage batteries. However, lithium dendrites lead to irreversible capacity decay in lithium‐metal batteries (LMBs). Besides, the strict assembly‐environment conditions of LMBs are regarded as a challenge for practical applications. In this study, a workable lithium‐metal anode with an artificial hybrid layer composed of a polymer and an alloy was designed and prepared by a simple chemical‐modification strategy. Treated lithium anodes remained dendrite‐free for over 1000 h in a Li–Li symmetric cell and exhibited outstanding cycle performance in high‐areal‐loading Li–S and Li–LiFePO4 full cells. Moreover, the treated lithium showed improved moisture stability that benefits from the hydrophobicity of the polymer, thus retaining good electrochemical performance after exposure to humid air.  相似文献   

12.
With the increasing demand for efficient and economic energy storage, Li‐S batteries have become attractive candidates for the next‐generation high‐energy rechargeable Li batteries because of their high theoretical energy density and cost effectiveness. Starting from a brief history of Li‐S batteries, this Review introduces the electrochemistry of Li‐S batteries, and discusses issues resulting from the electrochemistry, such as the electroactivity and the polysulfide dissolution. To address these critical issues, recent advances in Li‐S batteries are summarized, including the S cathode, Li anode, electrolyte, and new designs of Li‐S batteries with a metallic Li‐free anode. Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li‐S batteries serves as a prospective strategy for the industry in the future.  相似文献   

13.
Of the various beyond‐lithium‐ion batteries, lithium–sulfur (Li‐S) batteries were recently reported as possibly being the closest to market. However, its theoretically high energy density makes it potentially hazardous under conditions of abuse. Therefore, addressing the safety issues of Li‐S cells is necessary before they can be used in practical applications. Here, we report a concept to build a safe and highly efficient Li‐S battery with a flame‐inhibiting electrolyte and a sulfur‐based composite cathode. The flame retardant not only makes the carbonates nonflammable but also dramatically enhances the electrochemical performance of the sulfur‐based composite cathode, without an apparent capacity decline over 750 cycles, and with a capacity greater than 800 mA h?1 g?1(sulfur) at a rate of 10 C.  相似文献   

14.
Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium–sulfur (Li‐S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li‐S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core–shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm?2) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm?2) with a low electrolyte/sulfur ratio (10 μL mg?1). This research further demonstrates a durable Li‐Se/S pouch cell with high specific capacity, validating the potential practical applications.  相似文献   

15.
Li‐O2 batteries are promising candidates for next‐generation high‐energy‐density battery systems. However, the main problems of Li–O2 batteries include the poor rate capability of the cathode and the instability of the Li anode. Herein, an ester‐based liquid additive, 2,2,2‐trichloroethyl chloroformate, was introduced into the conventional electrolyte of a Li–O2 battery. Versatile effects of this additive on the oxygen cathode and the Li metal anode became evident. The Li–O2 battery showed an outstanding rate capability of 2005 mAh g?1 with a remarkably decreased charge potential at a large current density of 1000 mA g?1. The positive effect of the halide ester on the rate capacity is associated with the improved solubility of Li2O2 in the electrolyte and the increased diffusion rate of O2. Furthermore, the ester promotes the formation of a solid–electrolyte interphase layer on the surface of the Li metal, which restrains the loss and volume change of the Li electrode during stripping and plating, thereby achieving a cycling stability over 900 h and a Li capacity utilization of up to 10 mAh cm?2.  相似文献   

16.
Surface reactions constitute the foundation of various energy conversion/storage technologies, such as the lithium–sulfur (Li‐S) batteries. To expedite surface reactions for high‐rate battery applications demands in‐depth understanding of reaction kinetics and rational catalyst design. Now an in situ extrinsic‐metal etching strategy is used to activate an inert monometal nitride of hexagonal Ni3N through iron‐incorporated cubic Ni3FeN. In situ etched Ni3FeN regulates polysulfide‐involving surface reactions at high rates. Electron microscopy was used to unveil the mechanism of in situ catalyst transformation. The Li‐S batteries modified with Ni3FeN exhibited superb rate capability, remarkable cycling stability at a high sulfur loading of 4.8 mg cm?2, and lean‐electrolyte operability. This work opens up the exploration of multimetallic alloys and compounds as kinetic regulators for high‐rate Li‐S batteries and also elucidates catalytic surface reactions and the role of defect chemistry.  相似文献   

17.
Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K‐edge X‐ray absorption near‐edge structure (XANES) and 6,7Li magic‐angle spinning (MAS) NMR studies on a Li–S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all‐sulfur‐based components in the Li–S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using 7Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li–S batteries.  相似文献   

18.
Electroplating has been studied for centuries, not only in the laboratory but also in industry for machinery, electronics, automobile, aviation, and other fields. The lithium‐metal anode is the Holy Grail electrode because of its high energy density. But the recyclability of lithium‐metal batteries remains quite challenging. The essence of both conventional electroplating and lithium plating is the same, reduction of metal cations. Thus, industrial electroplating knowledge can be applied to revisit the electroplating process for lithium‐metal anodes. In conventional electroplating, some strategies like using additives, modifying substrates, applying pulse current, and agitating electrolyte have been explored to suppress dendrite growth. These methods are also effective in lithium‐metal anodes. Inspired by that, we revisit the fundamental electroplating theory for lithium‐metal anodes in this Minireview, mainly drawing attention to the theory of electroplating thermodynamics and kinetics. Analysis of essential differences between traditional electroplating and plating/stripping of lithium‐metal anodes is also presented. Thus, industrial electroplating knowledge can be applied to the electroplating process of lithium‐metal anodes to improve commercial lithium‐metal batteries and the study of lithium plating/stripping can further enrich the classical electroplating technique.  相似文献   

19.
Lithium–sulfur (Li–S) batteries have been recognized as promising substitutes for current energy‐storage technologies owing to their exceptional advantage in energy density. The main challenge in developing highly efficient and long‐life Li–S batteries is simultaneously suppressing the shuttle effect and improving the redox kinetics. Polar host materials have desirable chemisorptive properties to localize the mobile polysulfide intermediates; however, the role of their electrical conductivity in the redox kinetics of subsequent electrochemical reactions is not fully understood. Conductive polar titanium carbides (TiC) are shown to increase the intrinsic activity towards liquid–liquid polysulfide interconversion and liquid–solid precipitation of lithium sulfides more than non‐polar carbon and semiconducting titanium dioxides. The enhanced electrochemical kinetics on a polar conductor guided the design of novel hybrid host materials of TiC nanoparticles grown within a porous graphene framework (TiC@G). With a high sulfur loading of 3.5 mg cm?2, the TiC@G/sulfur composite cathode exhibited a substantially enhanced electrochemical performance.  相似文献   

20.
Lithium (Li) metal is a promising anode material for high‐energy density batteries. However, the unstable and static solid electrolyte interphase (SEI) can be destroyed by the dynamic Li plating/stripping behavior on the Li anode surface, leading to side reactions and Li dendrites growth. Herein, we design a smart Li polyacrylic acid (LiPAA) SEI layer high elasticity to address the dynamic Li plating/stripping processes by self‐adapting interface regulation, which is demonstrated by in situ AFM. With the high binding ability and excellent stability of the LiPAA polymer, the smart SEI can significantly reduce the side reactions and improve battery safety markedly. Stable cycling of 700 h is achieved in the LiPAA‐Li/LiPAA‐Li symmetrical cell. The innovative strategy of self‐adapting SEI design is broadly applicable, providing opportunities for use in Li metal anodes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号