首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We demonstrate the mediation of charge transport and release in thin films and devices by shifting the redox properties of layers of metal complexes by light. The nanoscale surface arrangement of both photo‐ and electrochemically‐active components is essential for the function of the thin films. Layers of well‐defined ruthenium complexes on indium‐tin‐oxide electrodes provide electron‐transport channels that allow the electrochemical addressing of layers of isostructural cobalt complexes. These cobalt complexes are electrochemically inactive when assembled directly on transparent metal‐oxide electrodes. The interlayer of ruthenium complexes on such electrodes allows irreversible oxidation of the cobalt complexes. However, shifting the redox properties of the ruthenium complexes by excitation with light opens up an electron‐transport channel to reduce the cobalt complexes; hence releasing the trapped positive charges.  相似文献   

2.
We report on the capability of polydopamine (PDA), a mimic of mussel adhesion proteins, as an electron gate as well as a versatile adhesive for mimicking natural photosynthesis. This work demonstrates that PDA accelerates the rate of photoinduced electron transfer from light‐harvesting molecules through two‐electron and two‐proton redox‐coupling mechanism. The introduction of PDA as a charge separator significantly increased the efficiency of photochemical water oxidation. Furthermore, simple incorporation of PDA ad‐layer on the surface of conducting materials, such as carbon nanotubes, facilitated fast charge separation and oxygen evolution through the synergistic effect of PDA‐mediated proton‐coupled electron transfer and the high conductivity of the substrate. Our work shows that PDA is an excellent electron acceptor as well as a versatile adhesive; thus, PDA constitutes a new electron gate for harvesting photoinduced electrons and designing artificial photosynthetic systems.  相似文献   

3.
Three generations of metalated trigonal supramolecular architectures, so‐called metallo‐triangles, were assembled from terpyridine (tpy) complexes. The first generation (G1) metallo‐triangles were directly obtained by reacting a bis(terpyridinyl) ligand with a 60° bite angle and ZnII ions. The direct self‐assembly of G2 and G3 triangles by mixing organic ligands and ZnII, however, only generated a mixture of G1 and G2, as well as a trace amount of insoluble polymer‐like precipitate. Therefore, a modular strategy based on the connectivity of ⟨tpy−Ru2+−tpy⟩ was employed to construct two metallo‐organic ligands for the assembly of G2 and G3 Sierpiński triangles. The metallo‐organic ligands LA and LB with multiple free terpyridines were obtained through Suzuki cross‐coupling of the RuII complexes, and then assembled with ZnII or CdII to obtain high‐generation metallo‐triangular architectures in nearly quantitative yield. The G1–G3 architectures were characterized by NOESY and DOSY NMR spectroscopy, ESI‐MS, TWIM‐MS, and transmission electron microscopy.  相似文献   

4.
Due to the difficulty in achieving high efficiency and high color purity simultaneously, blue emission is the limiting factor for the performance and stability of OLEDs. Since 2003, we have been working on organic light‐emitting diodes (OLEDs), especially on blue light. After a series of molecular designs, novel strategies have been proposed from different aspects. At first, highly efficient deep blue emission could be achieved through molecular design with highly twisted structure to suppress fluorescence quenching and redshift. Deep blue emitters with high efficiency in solid state, a twisted structure with aggregation induced emission (AIE) characteristics was incorporated to inhibit molecular aggregation, and triplet‐triplet fusion (TTF) and hybridized localized charge transfer (HLCT) were adopted to increase the ratio of triplet exciton used. Secondly, a highly efficient blue OLED could be achieved through improving charge transport. New electron transport materials (ETMs) with wide band gap were developed to control charge transport balance in devices. Thirdly, a highly efficient deep blue emission could be achieved through a mesoscopic structure of out‐coupling layer. A mesoscopic photonic structured organic thin film was fabricated on the top of metal electrode by self‐aggregation in order to improve the light out‐coupling efficiency.  相似文献   

5.
Interfacial engineering is expected to be a feasible strategy to improve the charge transport properties of the hole transport layer (HTL), which is of crucial importance to boost the device performance of organic solar cells (OSCs). In this study, two types of alcohol soluble materials, 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and di‐tetrabutylammoniumcis–bis(isothiocyanato)bis (2,2’‐bipyridyl‐4,4’‐dicarboxylato) ruthenium(II) (N719) dye were selected as the dopant for HTL. The doping of F4‐TCNQ and N719 dye in poly (ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) with and without integrating a graphene quantum‐dots (G‐QDs) layer has been explored in poly[[2,6′‐4‐8‐di(5‐ethylhexylthienyl)benzo[1,2‐b:3,3‐b]dithiophene][3‐fluoro‐2[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thio‐phenediyl:(2,2′‐((2Z,2′Z)‐(((4,4,9, 9‐tetrakis(4‐hexylphenyl)‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl)bis(4‐((2‐ethylhexyl)oxy)thiophene‐5,2‐diyl))bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile (PTB7‐Th:IEICO‐4F) OSCs. The power conversion efficiency of the non‐fullerene OSCs has been increased to 10.12% from 8.84%. The influence of HTL modification on the nano‐morphological structures and photophysical properties is analyzed based on the comparative studies performed on the control and modified devices. The use of chemical doping and bilayer strategy optimizes the energy level alignment, nanomorphology, hole mobility, and work‐function of HTL, leading to considerable reduction of the leakage current and recombination losses. Our work demonstrates that the doping of HTL and the incorporation of G‐QDs layer to constitute a bilayer HTL is an promising strategy to fabricate high performance non‐fullerene polymer solar cells  相似文献   

6.
This record summarizes our recent developments on gate‐tunable organic light‐emitting diodes (OLEDs). The key point is to modulate the charge carrier injection barrier by the applied gate potential. One way is to electrochemically dope charge carrier injection layer through porous electrodes. The electrochemically doped charge carrier layer thus form gate‐tunable contact with porous electrodes. Another way is to modulate the work‐function of electrodes that can have varied charge carrier injection barriers following the applied gate potential. Gate‐tunable OLEDs based on these two working principles have been fabricated, characterized and demonstrated for displaying simple digitals and letters. New materials including dielectric, porous electrodes, work function tunable electrodes, and charge carrier injection materials have been further explored for performance improvement.  相似文献   

7.
This study describes a general approach for probing semiconductor-dielectric interfacial chemistry effects on organic field-effect transistor performance parameters using bilayer gate dielectrics. Organic semiconductors exhibiting p-/n-type or ambipolar majority charge transport are grown on six different bilayer dielectric structures consisting of various spin-coated polymers/HMDS on 300 nm SiO(2)/p(+)-Si, and are characterized by AFM, SEM, and WAXRD, followed by transistor electrical characterization. In the case of air-sensitive (generally high LUMO energy) n-type semiconductors, dielectric surface modifications induce large variations in the corresponding OTFT performance parameters although the film morphologies and microstructures remain similar. In marked contrast, the device performance of air-stable n-type and p-type semiconductors is not significantly affected by the same dielectric surface modifications. Among the bilayer dielectric structures examined, nonpolar polystyrene coatings on SiO(2) having minimal gate leakage and surface roughness significantly enhance the mobilities of overlying air-sensitive n-type semiconductors to as high as approximately 2 cm(2)/(V s) for alpha,omega-diperfluorohexylcarbonylquaterthiophene polystyrene/SiO(2). Electron trapping due to silanol and carbonyl functionalities at the semiconductor-dielectric interface is identified as the principal origin of the mobility sensitivity to the various surface chemistries in the case of n-type semiconductors having high LUMO energies. Thiophene-based n-type semiconductors exhibiting similar film morphologies and microstructures on various bilayer gate dielectrics therefore provide an incisive means to probe TFT performance parameters versus semiconductor-dielectric interface relationships.  相似文献   

8.
Itou M  Araki Y  Ito O  Kido H 《Inorganic chemistry》2006,45(16):6114-6116
Oxo-acetato-bridged triruthenium cluster complexes ([Ru3(mu3-O)(mu-CH3CO2)6(L1)(L2)2](+/0)) show various color changes with variations of the total charge of the cluster complexes and terminal ligands. After photosensitized electron transfer via the triplet excited state of zinc tetraphenylporphyrin, the change of the formal oxidation state of the ruthenium ion allowed coordination with the carbon monoxide ligand accompanying the color changes.  相似文献   

9.
Electrochemical impedance spectroscopy (EIS) and transient voltage decay measurements are applied to compare the performance of dye sensitized solar cells (DSCs) using organic electrolytes, ionic liquids and organic‐hole conductors as hole transport materials (HTM). Nano‐crystalline titania films sensitized by the same heteroleptic ruthenium complex NaRu(4‐carboxylic acid‐4′‐carboxylate) (4,4′‐dinonyl‐2,2′‐bipyridyl)(NCS)2 , coded Z‐907Na are employed as working electrodes. The influence of the nature of the HTM on the photovoltaic figures of merit, that is, the open circuit voltage, short circuit photocurrent and fill factor is evaluated. In order to derive the electron lifetime, as well as the electron diffusion coefficient and charge collection efficiency, EIS measurements are performed in the dark and under illumination corresponding to realistic photovoltaic operating conditions of these mesoscopic solar cells. A theoretical model is established to interpret the frequency response off the impedance under open circuit conditions, which is conceptually similar to photovoltage transient decay measurements. Important information on factors that govern the dynamics of electron transport within the nanocrystalline TiO2 film and charge recombination across the dye sensitized heterojunction is obtained.  相似文献   

10.
By two different routes, 4,4′′′′‐azobis[2,2′: 6′,2″‐terpyridine] was synthesized. Its ruthenium complexes show interesting metal‐to‐ligand charge transfer (MLCT) absorption maxima in the electronic spectra. They represent the first ruthenium complexes of terpyridine units to give blue solutions.  相似文献   

11.
A systematic series of heteroleptic bis(tridentate)ruthenium(II) complexes of click‐derived 1,3‐bis(1,2,3‐triazol‐4‐yl)benzene N^C^N‐coordinating ligands was synthesized, analyzed by single crystal X‐ray diffraction, investigated photophysically and electrochemically, and studied by computational methods. The presented comprehensive characterization allows a more detailed understanding of the radiationless deactivation mechanisms. Furthermore, we provide a fully optimized synthesis and systematic variations towards redox‐matched, broadly and intensely absorbing, cyclometalated ruthenium(II) complexes. Most of them show a weak room‐temperature emission and a prolonged excited‐state lifetime. They display a broad absorption up to 700 nm and high molar extinction coefficients up to 20 000 M ?1 cm?1 of the metal‐to‐ligand charge transfer bands, resulting in a black color. Thus, the complexes reveal great potential for dye‐sensitized solar‐cell applications.  相似文献   

12.
Solution‐processable polymers consisting of perylene diimide (PDI) acceptor moieties alternating with dithienothiophene (DTT), N‐dodecyl‐dithienopyrrole (DTP), or oligomers of these donor groups have been synthesized. We have, in addition to varying the donor, varied the N,N′ substituents of the PDIs. The thermal, optical, electrochemical, and charge‐transport properties of the polymers have been investigated. The polymers show broad absorption extending from 300 to 1000 nm with optical band gaps as low as 1.2 eV; the band gap decreases with increasing the conjugation length of donor block, or by replacement of DTT by DTP. The electron affinities of the polymers, estimated from electrochemical data, range from ?3.87 to ?4.01 eV and are slightly affected by the specific choice of donor moiety, while the estimated ionization potentials (?5.31 to ?5.92 eV) are more sensitive to the choice of donor. Bottom‐gate top‐contact organic field‐effect transistors based on the polymers generally exhibit n‐channel behavior with electron mobilities as high as 1.7 × 10–2 cm2/V/s and on/off ratios as high as 106; one PDI‐DTP polymer is an ambipolar transport material with electron mobility of 4 × 10–4 cm2/V/s and hole mobility of 4 × 10–5 cm2/V/s in air. There is considerable variation in the charge transport properties of the polymers with the chemical structures. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
A series of cyclometalated diruthenium complexes with a redox‐active amine bridge were synthesized. Depending on the terminal ligands of the ruthenium components and the substituent on the amine unit, the one‐electron‐oxidized state can be either in the form of a weakly or strongly coupled mixed‐valence diruthenium complex, a fully charge‐delocalized three‐center system, or a bridge‐biased electrophore. This transition among different electronic forms was supported by electrochemistry, near‐infrared absorption, electron paramagnetic resonance, and density functional theory analysis.  相似文献   

14.
The synthesis of two series of peptidic chains composed of bis(terpyridine)ruthenium(II) acceptor units and organic chromophores (coumarin, naphthalene, anthracene, fluorene) by stepwise solid‐phase peptide synthesis (SPPS) techniques is described. The first series of dyads comprises directly amide linked chromophores, while the second one possesses a glycine spacer between the two chromophores. All dyads were studied by UV/Vis and NMR spectroscopy, steady‐state luminescence, luminescence decay and electrochemistry, as well as by DFT calculations. The results of these studies indicate weak electronic coupling of the chromophores in the ground state. Absorpion spectra of all dyads are dominated by metal‐to‐ligand charge‐transfer (MLCT) bands around 500 nm. The bichromophoric systems, especially with coumarin as organic chromophore, display additional strong absorptions in the visible spectral region. All complexes are luminescent at room temperature (3MLCT). Efficient quenching of the fluorescence of the organic chromophore by the attached ruthenium complex is observed in all dyads. Excitation spectra indicate energy transfer from the organic dye to the ruthenium chromophore.  相似文献   

15.
ZINDO/S calculations on cis‐Ru(4,4′‐dicarboxy‐2,2′‐bipyridine)2(X)2 and cis‐Ru(5,5′‐dicarboxy‐2,2′‐bipyridine)2(X)2 complexes where X = Cl?, CN?, and NCS? reveal that the highest occupied molecular orbital (HOMO) of these complexes has a large amplitude on both the nonchromophoric ligand X and the central ruthenium atom. The lowest‐energy metal to ligand charge transfer (MLCT) transition in these complexes involves electron transfer from ruthenium as well as the halide/pseudohalide ligand to the polypyridyl ligand. The contribution of the halide/pseudohalide ligand(X) to the HOMO affects the total amount of charge transferred to the polypyridyl ligand and hence the photoconversion efficiency. The virtual orbitals involved in the second MLCT transition in 4,4′‐dicarboxy‐2,2′‐bipyridine complexes have higher electron density on the ? COOH group compared to the lowest unoccupied molecular orbital and hence a stronger electronic coupling with the TiO2 surface and higher injection efficiency at shorter wavelengths. In comparison, the virtual orbitals involved in the second MLCT transition in 5,5′‐dicarboxy‐2,2′‐bipyridine complexes have lesser electron density on the ? COOH group, leading to a weaker electronic coupling with the TiO2 surface and therefore lower efficiency for electron injection at shorter wavelengths for these complexes. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

16.
Under light excitation transmembrane electron transfer is observed when a stacked Zn-Cu-Zn triporphyrin is incorporated in a bilayer between aqueous redox phases. The electric polarization of the membrane due to the photoinduced transmembrane charge flux drives ion transport. This effect increases the net charge transfer across the system, giving rise to an amplification similar to a field effect transistor. Thus this system can be considered an organic phototransistor.  相似文献   

17.
《Chemical physics》2002,275(1-3):243-251
Alternating Langmuir–Blodgett (LB) bilayer structures, consisting of a donor–acceptor (DA) layer of a phytochlorin–fullerene (PF) dyad and a layer of a regioregular poly(3-hexylthiophene) (PHT) polymer were used to study interlayer vectorial photoinduced electron transfer (VPET). As the dyad PF undergoes, under light illumination, an intramolecular ET from the phytochlorin to the fullerene moiety an intralayer VPET takes place in the LB monolayer. When PF was deposited on the PHT layer and excited the second ET took place from the PHT layer to the phytochlorin cation. Thus the PHT layer can act as a secondary electron donor and accompany the primary photoinduced electron transfer in the PF layer by a spontaneous interlayer electron transfer. Important characteristic properties of the VPET bilayer are the longer distance of charge separation (CS) and the longer lifetime of the charge separated state (lifetime from microsecond to second) as compared to VPET of the PF monolayer alone (where the lifetime of CS state was ≈30 ns). The CT measurements were carried out for different molecular orientations and film structures. Models for the multistep photochemical reactions are discussed.  相似文献   

18.
π‐Conjugated organic materials possess a wide range of tunable optoelectronic properties which are dictated by their molecular structure and supramolecular arrangement. While many efforts have been put into tuning the molecular structure to achieve the desired properties, rational supramolecular control remains a challenge. Here, we report a novel series of supramolecular materials formed by the co‐assembly of weak π‐electron donor (indolo[2,3‐a]carbazole) and acceptor (aromatic o‐quinones) molecules via complementary hydrogen bonding. The resulting polarization creates a drastic perturbation of the molecular energy levels, causing strong charge transfer in the weak donor–acceptor pairs. This leads to a significant lowering (up to 1.5 eV) of the band gaps, intense absorption in the near‐IR region, very short π‐stacking distances (≥3.15 Å), and strong ESR signals in the co‐crystals. By varying the strength of the acceptor, the characteristics of the complexes can be tuned between intrinsic, gate‐, or light‐induced semiconductivity with a p‐type or ambipolar transport mechanism.  相似文献   

19.
有机/无机异质结薄膜发光二极管   总被引:3,自引:0,他引:3  
聚合物发光二极管(LED)自从Burrou吵es等于1990年首次报导PPV的电致发光[‘]以来,由于聚合物半导体具有热和化学性能的稳定,克眼了有机小分子材料容易晶化的优点,在平板显示领域必将占有一席之地,从而吸引了许多科学家投身到这一领域来.众所周知,要想实现LED的实用化  相似文献   

20.
A novel tris heteroleptic dipyridophenazine complex of ruthenium(II), [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+, containing a covalently tethered ruthenium pentammine quencher coordinated through a bridging histidine has been synthesized and characterized spectroscopically and biochemically in a DNA environment and in organic solvent. Steady-state and time-resolved luminescence measurements indicate that the tethered Ru complex is quenched relative to the parent complexes [Ru(phen)(dppz)(bpy')]2+ and [Ru(phen)(dppz)(bpy'-his)]2+ in DNA and acetonitrile, consistent with intramolecular photoinduced electron transfer. Intercalated into guanine-containing DNA, [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+, upon excitation and intramolecular quenching, is capable of injecting charge into the duplex based upon the EPR detection of guanine radicals. DNA-mediated charge transport is also indicated using a kinetically fast cyclopropylamine-substituted base as an electron hole trap. Guanine damage is not observed, however, in measurements using the guanine radical as the kinetically slower hole trap, indicating that back electron-transfer reactions are competitive with guanine oxidation. Moreover, transient absorption measurements reveal a novel photophysical reaction pathway for [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+ in the presence of DNA that is competitive with the intramolecular flash-quench process. These results illustrate the remarkably rich redox chemistry that can occur within a bimolecular ruthenium complex intercalated in duplex DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号