首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of supramolecular assemblies of types [Ag8( L )4](PF6)8 and [Ag4( L )2](PF6)4, obtained from the tetraphenylethylene (TPE) bridged tetrakis(1,2,4-triazolium) salts H4-L(PF6)4 and AgI ions, is described. The assembly type obtained dependends on the N-wingtip substituents of H4-L(PF6)4. Changes in the lengths of the N4-wingtip substituents enables controlled formation of assemblies with either [Ag4( L )2](PF6)4 or [Ag8( L )4](PF6)8 stoichiometry. The molecular structures of selected [Ag8( L )4](PF6)8 and [Ag4( L )2](PF6)4 assemblies were determined by X-ray diffraction analyses. While H4- L (PF6)4 does not exhibit fluorescence in solution, their tetra-NHC (NHC=N-heterocyclic carbene) assemblies do upon NHC–metal coordination. Upon irradiation, all assemblies undergo a light-induced, supramolecule-to-supramolecule structural transformation by an oxidative photocyclization involving phenyl groups of the TPE core, resulting in a significant change of the luminescence properties.  相似文献   

2.
Metallosupramolecular poly‐NHC‐metal assemblies were prepared from trigonal hexakis (H6‐ 1 a (PF6)6 and H6‐ 1 b (PF6)6) or nonakis (H9‐ 3 (BF4)9) imidazolium salts and Ag2O. Complexes [Ag6( 1 a )2](PF6)6 and [Ag6( 1 b )2](PF6)6 are built from six Ag+ ions sandwiched between two trigonal hexacarbene ligands with an inner and an outer NHC donor in each of the three ligand arms. The metal atoms are arranged in two triangles. The hexakis‐NHC ligands bear cinnamic ester groups at the outlying NHC donors, used in postsynthetic [2+2] cycloaddition reactions linking two hexakis‐NHC ligands by three cyclobutane units to give complexes [Ag6( 2 a )](PF6)6 and [Ag6( 2 b )](PF6)6 bearing a dodecacarbene ligand. From the related nonakisimidazolium salt H9‐ 3 (BF4)9, complex [Ag9( 4 )](BF4)9 bearing an octadecacarbene ligand was obtained. Removal of the template metals yielded very large, stable, polyimidazolium cations with 12 or 18 internal imidazolium groups.  相似文献   

3.
Two tetraphenylethylene (TPE) bridged tetraimidazolium salts, [H4 L ‐Et](PF6)4 and [H4 L ‐Bu](PF6)4, were used as precursors for the synthesis of the dinuclear AgI and AuI tetracarbene complexes [Ag2( L ‐Et)](PF6)2, [Ag2( L ‐Bu)](PF6)2, [Au2( L ‐Et)](PF6)2, and [Au2( L ‐Bu)](PF6)2. The tetraimidazolium salts show almost no fluorescence (Φ F<1 %) in dilute solution while their NHC complexes display fluorescence “turn‐on” (Φ F up to 47 %). This can be ascribed to rigidification mediated by the restriction of intramolecular rotation within the TPE moiety upon complexation. DFT calculations confirm that the metals are not involved in the lowest excited singlet and triplet states, thus explaining the lack of phosphorescence and fast intersystem crossing as a result of heavy atom effects. The rigidification upon complexation for fluorescence turn‐on constitutes an alternative to the known aggregation‐induced emission (AIE).  相似文献   

4.
Imidazolium salts bearing triazole groups are synthesized via a copper catalyzed click reaction, and the silver, palladium, and platinum complexes of their N‐heterocyclic carbenes are studied. [Ag4(L1)4](PF6)4, [Pd(L1)Cl](PF6), [Pt(L1)Cl](PF6) (L1=3‐((1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)methyl)‐1‐(pyrimidin‐2‐yl)‐1H‐imidazolylidene), [Pd2(L2)2Cl2](PF6)2, and [Pd(L2)2](PF6)2 (L2=1‐butyl‐3‐((1‐(pyridin‐2‐yl)‐1H‐1,2,3‐triazol‐4‐yl)methyl)imidazolylidene) have been synthesized and fully characterized by NMR, elemental analysis, and X‐ray crystallography. The silver complex [Ag4(L1)4](PF6)4 consists of a Ag4 zigzag chain. The complexes [Pd(L1)Cl](PF6) and [Pt(L1)Cl](PF6), containing a nonsymmetrical NCN ′ pincer ligand, are square planar with a chloride trans to the carbene donor. [Pd2(L2)2Cl2](PF6)2 consists of two palladium centers with CN2Cl coordination mode, whereas the palladium in [Pd(L2)2](PF6)2 is surrounded by two carbene and two triazole groups with two uncoordinated pyridines. The palladium compounds are highly active for Suzuki–Miyaura cross coupling reactions of aryl bromides and 1,1‐dibromo‐1‐alkenes in neat water under an air atmosphere.  相似文献   

5.
A series of dicarbene‐bridged metallacycles [Ag2( 1 )2](PF6)2, [Ag2( 2 )2](BF4)2, [Ag2( 3 )2](PF6)2, [Ag2( 7 )2](BF4)2, [Ag2( 8 )2](BF4)2 and [Ag2( 11 )2](PF6)2 were obtained in high yields via the reactions of 1,2,4‐triazole‐, 1,2,3‐triazole‐ and imidazo[1,5‐a]pyridine‐based ligands with Ag2O in CH3CN. The C=C double bonds in all of the newly synthesized metallacycles went through [2 + 2] photodimerization under UV irradiation condition (λ = 365 nm, T = 298 K) yielding the dinuclear rctt‐cyclobutane‐silver(I) complexes [Ag2( 4 )](PF6)2, [Ag2( 5 )](BF4)2, [Ag2( 6 )](PF6)2, [Ag2( 9 )](BF4)2, [Ag2( 10 )](BF4)2 and [Ag2( 12 )](PF6)2, respectively with quantitative yields. Treatment of the these cyclobutane‐bridged silver(I) complexes with NH4Cl resulted in the exclusive formation of cyclobutane derivatives after removal of the silver(I) metal ions.  相似文献   

6.
The metal-controlled self-assembly of organometallic molecular cylinders from a series of imidazo[1,5-a]pyridine-based tris-NHC ligands is described in this report. The imidazo[1,5-a]pyridinium salts H3- L (PF6)3 ( L = 4 a – 4 c ) were treated with 1.5 equivalents of Ag2O to yield the trinuclear AgI hexacarbene cages [Ag3( L )2](PF6)3 ( L = 4 a – 4 c ), in which three AgI are sandwiched between the two tricarbene ligands. The silver(I) complexes [Ag3( L )2](PF6)3 underwent a facile transmetalation reaction in the presence of 3 equivalents of [AuCl(tht)] (tht=tetrahydrothiophene) to furnish the trinuclear AuI cylinder-like cages [Au3( L )2](PF6)3 ( L = 4 a – 4 c ) without destruction of the metallosupramolecular structure. The new hexacarbene assemblies feature a large cavity that can easily accommodate a molecule of dimethyl sulfoxide as molecular guest. This is the first study of a unique “host–guest” system containing an organometallic cylinder-like cage derived exclusively from poly-NHC ligands.  相似文献   

7.
New hybrid ligands are reported that combine two types of popular donor groups within a single linear scaffold, viz., a central pyrazolate bridge and two appended bis(N‐heterocyclic carbene) units; the ligand strands thus provide two potentially tridentate {NCC} compartments. The pyrazole/tetraimidazolium proligands, [H5L1](PF6)4 and [H5L2](PF6)4 , were synthesized via multi‐step protocols, and the NH prototropy of [H5L1](PF6)4 was examined by variable temperature (VT) NMR spectroscopy, giving solvent dependent activation parameters (ΔH? = 27.6 kJ · mol–1, ΔS? = –125 J · mol–1 · K–1 in [D3]MeCN; ΔH? = 40.4 kJ · mol–1, ΔS? = –86.9 J · mol–1 · K–1 in [D6]DMSO) that are in the range typical for pyrazoles. Reaction of the proligands with Ag2O gave hexametallic complexes [Ag6(L1)2](PF6)4 and [Ag6(L2)2](PF6)4 that involve all six potential donor atoms of the ligands, viz. the four CNHC and two Npz donors, in metal coordination. X‐ray crystallography revealed a chair‐like central {Ag6} deck in both complexes but different arrangements of the ligand strands, which goes along with significantly different AgI ··· AgI distances that indicate more pronounced argentophilic interactions in case of [Ag6(L1)2]4 +.  相似文献   

8.
Multi-ligand self-assembly to attain the AgI-N-heterocyclic carbene (NHC)-built hexanuclear organometallic cages of composition [Ag6( 3 a , b )4](PF6)6 from the reaction of benzimidazole-derived tris(azolium) salts [H3- 3 a , b ](PF6)3 with Ag2O was achieved. The molecular structures of the cages were established by X-ray diffraction studies along with NMR and MS analyses. The existence of a single assembly in solution was supported by diffusion-ordered spectroscopy (DOSY) 1H NMR spectra. Further, transmetalation reactions of these self-assembled complexes, [Ag6( 3 a , b )4](PF6)6, with CuI/AuI-ions provided various coinage metal-NHC complexes having diverse molecular compositions, which included the first example of a hexanuclear CuI-dodecacarbene complex, [Cu6( 3 b )4](PF6)6.  相似文献   

9.
Imidazolium salts, [RS(O)? CH2(C3H3N2)Mes]Cl (R=Me ( L1 a ), Ph ( L1 b )); Mes=mesityl), make convenient carbene precursors. Palladation of L1 a affords the monodentate dinuclear complex, [(PdCl2{MeS(O)CH2(C3H2N2)Mes})2] ( 2 a ), which is converted into trans‐[PdCl2(NHC)2] (trans‐ 4 a ; N‐heterocyclic carbene) with two rotamers in anti and syn configurations. Complex trans‐ 4 a can isomerize into cis‐ 4 a (anti) at reflux in acetonitrile. Abstraction of chlorides from 4 a or 4 b leads to the formation of a new dication: trans‐[Pd{RS(O)CH2(C3H2N2)Mes}2](PF6)2 (R=Me ( 5 a ), Ph ( 5 b )). The X‐ray structure of 5 a provides evidence that the two bidentate SO? NHC ligands at palladium(II) are in square‐planar geometry. Two sulfoxides are sulfur‐ and oxygen‐bound, and constitute five‐ and six‐membered chelate rings with the metal center, respectively. In acetonitrile, complexes 5 a or 5 b spontaneously transform into cis‐[Pd(NHC)2(NCMe)2](PF6)2. Similar studies of thioether–NHCs have also been examined for comparison. The results indicate that sulfoxides are more labile than thioethers.  相似文献   

10.
Quinoline bridged imidazolium precursors 5,8‐bis(NR‐imidazolylidenylmethylene)quinoline PF6 salts [H2L](PF6)2 [R = Me ( 1a ), R = naphthylmethyl ( 1b )] were prepared by quaternization of N‐methylimidazole and N‐naphthylmethylimidazole with 5,8‐bis(bromomethyl)quinoline, respectively. Reaction of the imidazolium ligands 1a and 1b with Hg(OAc)2 and Ag2O in acetonitrile gave the macrocyclic transition metal carbene complexes [Hg2L2](PF6)4 ( 2a and 2b ) and [Ag2L2](PF6)2 ( 3a and 3b ), respectively. All the N‐heterocyclic carbene complexes were characterized in detail by NMR, ESI‐MS, and elemental analysis. Structures of complexes 2a and 3a were determined by X‐ray diffraction studies. Structural studies revealed that the coordination arrangement of the central mercury atom in complex 2a displays a tricoordinate mode and the molecular conformation results in a“closed” form with the bridging quinoline functionality in the macrocycle, whereas the silver complex 3a does not show an coordiantion between the bridging quinoline and the AgI ion, which results in an “open” conformation of the macrocycle. The HgII and AgI NHC complexes showed similar UV absorption and luminescence in acetonitrile solutions.  相似文献   

11.
A few pyrazole-functionalized imidazolium salts have been prepared via the reactions of N-alkylimidazole and 3,5-bis(chloromethyl)pyrazole or 2-(1-(2-chloroethyl)-5-methyl-1H-pyrazol-3-yl)-6-(5-methyl-1-vinyl-1H-pyrazol-3-yl) pyridine. Reactions of these imidazolium salts with Ag2O led to the successful isolation of tetranuclear [Ag4(L)2](X)2 (X = PF6 or BF4; H3L1 = 3,5-bis(N-benzylimidazoliumyl)pyrazole, H3L2 = 3,5-bis(N-(2,4,6-trimethylphenyl)imidazoliumyl)pyrazole, H3L3 = imidazolium cyclophane from the condensation of 3,5-bis(chloromethyl)pyrazole and 1,4-bis(imidazolyl)butane) and trinuclear silver clusters supported by N-heterocyclic carbene ligands in high yields. The molecular structures of these silver complexes have been confirmed by 1H, 13C NMR, ESI-MS spectroscopy, and X-ray diffraction analyses. The tetranuclear complexes [Ag4(L1)2](PF6)2 (1) and [Ag4(L2)2](BF4)2 (2) consist of a pair of Ag-Ag contacts (ca. 3.11 Å) showing weak silver-silver interaction. [Ag4(L3)2](PF6)2 (3) has a square planar Ag4 core sandwiched by two NHC cyclophanes with Ag-Ag distances of 3.22 Å. All the silver atoms in 1-3 are located in the same linear C-Ag-N coordination environment. [Ag3(L4)2] (PF6)3 (HL4 = 2-(1-(2-methylimidazoliumylethyl)-5-methyl-1H-pyrazol-3-yl)-6-(5-methyl-1-vinyl-1H-pyrazol-3-yl) pyridine) (4) is a trinuclear complex in which the three silver are bridged by two L4 molecules, and the Ag3 units form one-dimensional chain via Ag-π interaction. The luminescence properties of the imidazolium salts and their silver complexes were also studied.  相似文献   

12.
A procedure for the synthesis of three‐dimensional hexakisimidazolium cage compounds has been developed. The reaction of the trigonal trisimidazolium salts H3L(PF6)3, decorated with three N‐olefinic pendants, and silver oxide yielded trinuclear trisilver(I) hexacarbene molecular cylinders of the type [Ag3L2]3+ with the olefinic pendants from the two different tricarbene ligands arranged in three pairs. Subsequent UV irradiation gave three cyclobutane links between the two tris‐NHC ligands in three [2+2] cycloaddition reactions, thereby generating a three‐dimensional hexakis‐NHC ligand. Removal of the metal ions resulted in the formation of three‐dimensional hexakisimidazolium cages with a large internal cavity.  相似文献   

13.
Macrocyclic ligand systems with a variety of (different) donor sites oftentimes give rise to very exciting and unexpected multinuclear metal complexes. We report herein the structure of a trinuclear mixed imidazolylidene/imidazolium nickel N‐heterocyclic carbene (NHC) complex, namely di‐μ‐chlorido‐bis{μ‐calix[2]imidazolium[2]imidazolylidene[2]pyrazolate}trinickel(II) tetrakis(hexafluoridophosphate) acetonitrile tetrasolvate, [Ni3(C24H24N12)2Cl2](PF6)4·4CH3CN or [Ni3(L Me)2Cl2](PF6)4·4CH3CN, that can be understood as a trapped reaction intermediate during the synthesis of the respective [Ni2L Me](PF6)2 product. The structure not only contains protonated next to deprotonated imidazole heterocycles, but also Ni2+ ions with fundamentally different coordination modes within one molecule. Two of the three metal atoms are coordinated in a square‐pyramidal fashion by half a ligand molecule and one chloride ligand, whereas the third Ni2+ ion is bound octahedrally by four pyrazolate moieties and two chloride anions.  相似文献   

14.
The title complex, [Ru(C10H8N2S)2(CH3CN)2](BF4)2·H2O, is the product of the solvolysis of [Ru(dps‐N,N)2(dps‐N,S)](PF6)2 (dps is di‐2‐pyridyl sulfide) in the presence of HBF4 in acetone–aceto­nitrile at room temperature. There are two independent cations, with the Ru atoms on inversion centres; each Ru atom has an octahedral geometry with the dps mol­ecules behaving as N,N′‐bidentate ligands and assuming a trans arrangement.  相似文献   

15.
Reaction of biotin {C10H16N2O3S, HL; systematic name: 5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoic acid} with silver acetate and a few drops of aqueous ammonia leads to the deprotonation of the carboxylic acid group and the formation of a neutral chiral two‐dimensional polymer network, poly[[{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)] trihydrate], {[Ag(C10H15N2O3S)]·3H2O}n or {[Ag(L)]·3H2O}n, (I). Here, the AgI cations are pentacoordinate, coordinated by four biotin anions via two S atoms and a ureido O atom, and by two carboxylate O atoms of the same molecule. The reaction of biotin with silver salts of potentially coordinating anions, viz. nitrate and perchlorate, leads to the formation of the chiral one‐dimensional coordination polymers catena‐poly[[bis[nitratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] monohydrate], {[Ag2(NO3)2(C10H16N2O3S)2]·H2O}n or {[Ag2(NO3)2(HL)2]·H2O}n, (II), and catena‐poly[bis[perchloratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}], [Ag2(ClO4)2(C10H16N2O3S)2]n or [Ag2(ClO4)2(HL)2]n, (III), respectively. In (II), the AgI cations are again pentacoordinated by three biotin molecules via two S atoms and a ureido O atom, and by two O atoms of a nitrate anion. In (I), (II) and (III), the AgI cations are bridged by an S atom and are coordinated by the ureido O atom and the O atoms of the anions. The reaction of biotin with silver salts of noncoordinating anions, viz. hexafluoridophosphate (PF6) and hexafluoridoantimonate (SbF6), gave the chiral double‐stranded helical structures catena‐poly[[silver(I)‐bis{μ2‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridophosphate], {[Ag(C10H16N2O3S)2](PF6)}n or {[Ag(HL)2](PF6)}n, (IV), and catena‐poly[[[{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)]‐μ2‐{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridoantimonate], {[Ag(C10H16N2O3S)2](SbF6)}n or {[Ag(HL)2](SbF6)}n, (V), respectively. In (IV), the AgI cations have a tetrahedral coordination environment, coordinated by four biotin molecules via two S atoms, and by two carboxy O atoms of two different molecules. In (V), however, the AgI cations have a trigonal coordination environment, coordinated by three biotin molecules via two S atoms and one carboxy O atom. In (IV) and (V), neither the ureido O atom nor the F atoms of the anion are involved in coordination. Hence, the coordination environment of the AgI cations varies from AgS2O trigonal to AgS2O2 tetrahedral to AgS2O3 square‐pyramidal. The conformation of the valeric acid side chain varies from extended to twisted and this, together with the various anions present, has an influence on the solid‐state structures of the resulting compounds. The various O—H...O and N—H...O hydrogen bonds present result in the formation of chiral two‐ and three‐dimensional networks, which are further stabilized by C—H...X (X = O, F, S) interactions, and by N—H...F interactions for (IV) and (V). Biotin itself has a twisted valeric acid side chain which is involved in an intramolecular C—H...S hydrogen bond. The tetrahydrothiophene ring has an envelope conformation with the S atom as the flap. It is displaced from the mean plane of the four C atoms (plane B) by 0.8789 (6) Å, towards the ureido ring (plane A). Planes A and B are inclined to one another by 58.89 (14)°. In the crystal, molecules are linked via O—H...O and N—H...O hydrogen bonds, enclosing R22(8) loops, forming zigzag chains propagating along [001]. These chains are linked via N—H...O hydrogen bonds, and C—H...S and C—H...O interactions forming a three‐dimensional network. The absolute configurations of biotin and complexes (I), (II), (IV) and (V) were confirmed crystallographically by resonant scattering.  相似文献   

16.
The ultrasonic reaction of AgNO3, 4,4′‐bipyridine (bipy) and naphthalene‐2,6‐dicarboxylic acid (H2NDC) gives rise to the title compound, {[Ag2(C10H8N2)2](C12H6O4)·4H2O}n. The NDC dianion is located on an inversion centre. The AgI centre is coordinated in a linear manner by two N atoms from two bipy ligands. The crystal structure consists of one‐dimensional AgI–bipy cationic chains and two‐dimensional NDC–H2O anionic sheets, constructed by coordination bonds and supramolecular interactions, respectively.  相似文献   

17.
Using the ligands N‐methylimidazole ( MeIm ), N‐ethylimidazole ( EtIm ), N‐propylimidazole ( PrIm ), and 1‐methyl‐1H‐1, 2, 4‐triazole ( MeTz ) three series with a total of 13 iron(II) complexes were isolated. The series comprise of the following complexes: (a) [Fe( MeIm )6](ClO4)2 ( 1 ), [Fe( EtIm )6](ClO4)2 ( 2 ), [Fe( PrIm )6](ClO4)2( 3 ), [Fe( MeTz )6](ClO4)2 ( 4 ), [Fe( MeIm )6](MeSO3)2 ( 5 ), [Fe( EtIm )6](MeSO3)2 ( 6 ), and [Fe( MeTz )6](BF4)2 ( 10 ); (b) [Fe( MeIm )4(MeSO3)2]( 7 ), [Fe( EtIm )4(MeSO3)2] ( 8 ), and [Fe( PrIm )4(MeSO3)2] ( 9 ); (c) [Fe( MeIm )4(NCS)2] ( 15 ), [Fe( EtIm )4(NCS)2] ( 16 ), and [Fe( MeTz )4(NCS)2] ( 17 ). Single crystal X‐ray diffraction studies were performed on 7 – 10 and 15 – 17 . Temperature dependent magnetic susceptibility measurements were performed on selective examples of all series, and confirmed them to be in the HS state over the range 6–300 K. DFT calculations were performed at BP86/def‐SV(P) and TPSSh/def2‐TZVPP level on all [Fe L 6]2+ complex cations and the neutral complexes 7 – 9 and 15 – 17 . Additionally the four homoleptic nickel(II) complexes [Ni L 6](ClO4)2 ( 11 : L = MeIm ; 12 : L = EtIm ; 13 : L = PrIm ; 14 : L = MeTz ) were synthesized and compounds 11 – 13 structurally characterized. UV/Vis/NIR spectroscopic measurements were carried out on all homoleptic iron(II) and nickel(II) complexes. The 10Dq values were determined to be in the range of 11547–11574 and 10471–10834 cm–1 for the iron(II) and nickel(II) complexes, respectively.  相似文献   

18.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

19.
The phenylimidorhenium(V) complexes [Re(NPh)X3(PPh3)2] (X = Cl, Br) react with the N‐heterocyclic carbene (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐2‐ylidene (LEt) under formation of the stable rhenium(V) complex cations [Re(NPh)X(LEt)4]2+ (X = Cl, Br), which can be isolated as their chloride or [PF6]? salts. The compounds are remarkably stable against air, moisture and ligand exchange. The hydroxo species [Re(NPh)(OH)(LEt)4]2+ is formed when moist solvents are used during the synthesis. The rhenium atoms in all three complexes are coordinated in a distorted octahedral fashion with the four NHC ligands in equatorial planes of the molecules. The Re–C(carbene) bond lengths between 2.171(8) and 2.221(3) Å indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atoms. Attempts to prepare analogous phenylimido complexes from [Re(NPh)Cl3(PPh3)2] and 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene (Li?Pr) led to a cleavage of the rhenium‐nitrogen multiple bond and the formation of the dioxo complex [ReO2(Li?Pr)4]+.  相似文献   

20.
The reactions of [Pt(dpma)(H2O)2]2+ (dpma = 2,2′‐dipyridylmethylamine) and [Pt(dpk)(H2O)2]2+ (dpk = 2,2′‐dipyridylketone) with the model nucleobases 1‐methylthymine (1‐MeT) and 1‐methyluracil (1‐MeU) were studied. Reaction products were characterized by 195Pt NMR spectroscopy and by X‐ray structure analysis. The symmetric dpma and dpk diaqua complexes form dinuclear complexes with 1‐methylthymine, acting as secondary bridging ligand via its N3 and O4 donor atoms. [Pt2(dpma)2(1‐MeT)2](ClO4)2 · H2O ( 5 ) and [Pt2(dpk)(dpk · H2O)(1‐MeT)2](PF6)2 · 4 H2O ( 6 ) both show a head‐to‐head arrangement. Biological tests show a significant in vitro antitumor activity of [Pt(dpk)Cl2] against the human glioma cell line U 87.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号