首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
DNAzymes have been recognized as promising transducing agents for visualizing endogenous biomarkers, but their inefficient intracellular delivery and limited amplification capacity (including insufficient cofactor supply) preclude their extensive biological application. Herein, an autocatalytic DNAzyme (ACD) biocircuit is constructed for amplified microRNA imaging in vivo based on a hybridization chain reaction (HCR) and DNAzyme biocatalysis, sustained by a honeycomb MnO2 nanosponge (hMNS). The hMNS not only delivers DNA probes, but also supplies Mn2+ as a DNAzyme cofactor and magnetic resonance imaging (MRI) agent. Through the subsequent cross-activation of HCR and DNAzyme amplicons, the ACD amplifies the limited signal resulting from miRNA recognition. The hMNS/ACD system was used to image microRNA in vivo, thus demonstrating its great promise in cancer diagnosis.  相似文献   

2.
The therapeutic performance of DNAzyme-involved gene silencing is significantly constrained by inefficient conditional activation and insufficient cofactor supply. Herein, a self-sufficient therapeutic nanosystem was realized through the delicate design of DNAzyme prodrugs and MnO2 into a biocompatible nanocapsule with tumor-specific recognition/activation features. The indocyanine green (ICG)-modified DNA prodrugs are designed by splitting the DNAzyme and then reconstituted into the exquisite catalyzed hairpin assembly (CHA) amplification circuit. Based on the photothermal activation of ICG, the nanocapsule was disassembled to expose the MnO2 ingredient which was immediately decomposed into Mn2+ ions to supplement an indispensable DNAzyme cofactor on-demand with a concomitant O2 generation for enhancing the auxiliary phototherapy. The endogenous microRNA catalyzes the amplified assembly of DNA prodrugs via an exquisite CHA principle, leading to the DNAzyme-mediated simultaneous silencing of two key tumor-involved mRNAs. This self-activated theranostic nanocapsule could substantially expand the toolbox for accurate diagnosis and programmable therapeutics.  相似文献   

3.
DNAzymes have been recognized as potent therapeutic agents for gene therapy, while their inefficient intracellular delivery and insufficient cofactor supply precludes their practical biological applications. Metal–organic frameworks (MOFs) have emerged as promising drug carriers without in‐depth consideration of their disassembled ingredients. Herein, we report a self‐sufficient MOF‐based chlorin e6‐modified DNAzyme (Ce6‐DNAzyme) therapeutic nanosystem for combined gene therapy and photodynamic therapy (PDT). The ZIF‐8 nanoparticles (NPs) could efficiently deliver the therapeutic DNAzyme without degradation into cancer cells. The pH‐responsive ZIF‐8 NPs disassemble with the concomitant release of the guest DNAzyme payloads and the host Zn2+ ions that serve, respectively, as messenger RNA‐targeting agent and required DNAzyme cofactors for activating gene therapy. The auxiliary photosensitizer Ce6 could produce reactive oxygen species (ROS) and provide a fluorescence signal for the imaging‐guided gene therapy/PDT.  相似文献   

4.
DNAzymes hold promise for gene‐silencing therapy, but the lack of sufficient cofactors in the cell cytoplasm, poor membrane permeability, and poor biostability have limited the use of DNAzymes in therapeutics. We report a DNAzyme–MnO2 nanosystem for gene‐silencing therapy. MnO2 nanosheets adsorb chlorin e6‐labelled DNAzymes (Ce6), protect them from enzymatic digestion, and efficiently deliver them into cells. The nanosystem can also inhibit 1O2 generation by Ce6 in the circulatory system. In the presence of intracellular glutathione (GSH), MnO2 is reduced to Mn2+ ions, which serve as cofactors of 10–23 DNAzyme for gene silencing. The release of Ce6 generates 1O2 for more efficient photodynamic therapy. The Mn2+ ions also enhance magnetic resonance contrast, providing GSH‐activated magnetic resonance imaging (MRI) of tumor cells. The integration of fluorescence recovery and MRI activation provides fluorescence/MRI bimodality for monitoring the delivery of DNAzymes.  相似文献   

5.
Herein, a novel sensitive pseudobienzyme electrocatalytic DNA biosensor was proposed for mercury ion (Hg2+) detection by using autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Thiol functionalized capture DNA was firstly immobilized on a nano-Au modified glass carbon electrode (GCE). In presence of Hg2+, the specific coordination between Hg2+ and T could result in the assembly of primer DNA on the electrode, which successfully triggered the HCR to form the hemin/G-quadruplex DNAzyme nanowires with substantial redox probe thionine (Thi). In the electrolyte of PBS containing NADH, the hemin/G-quadruplex nanowires firstly acted as an NADH oxidase to assist the concomitant formation of H2O2 in the presence of dissolved O2. Then, with the redox probe Thi as electron mediator, the hemin/G-quadruplex nanowires acted as an HRP-mimicking DNAzyme that quickly bioelectrocatalyzed the reduction of produced H2O2, which finally led to a dramatically amplified electrochemical signal. This method has demonstrated a high sensitivity of Hg2+ detection with the dynamic concentration range spanning from 1.0 ng L−1 to 10 mg L−1 Hg2+ and a detection limit of 0.5 ng L−1 (2.5 pM) at the 3Sblank level, and it also demonstrated excellent selectivity against other interferential metal ions.  相似文献   

6.
In this work, a new signal amplified strategy was constructed based on isothermal exponential amplification reaction (EXPAR) and hybridization chain reaction (HCR) generating the hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme (HRP-mimicking DNAzyme) nanowires as signal output component for the sensitive detection of thrombin (TB). We employed EXPAR’s ultra-high amplification efficiency to produce a large amount of two hairpin helper DNAs within a minutes. And then the resultant two hairpin helper DNAs could autonomously assemble the hemin/G-quadruplex HRP-mimicking DNAzymes nanowires as the redox-active reporter units on the electrode surface via hybridization chain reaction (HCR). The hemin/G-quadruplex structures simultaneously served as electron transfer medium and electrocatalyst to amplify the signal in the presence of H2O2. Specifically, only when the EXPAR reaction process has occurred, the HCR could be achieved and the hemin/G-quadruplex complexes could be formed on the surface of an electrode to give a detectable signal. The proposed strategy combines the amplification power of the EXPAR, HCR, and the inherent high sensitivity of the electrochemical detection. With such design, the proposed assay showed a good linear relationship within the range of 0.1 pM–50 nM with a detection limit of 33 fM (defined as S/N = 3) for TB.  相似文献   

7.
Synthetic catalytic DNA circuits have been recognized as a promising signal amplification toolbox for sensitive intracellular imaging, yet their selectivity and efficiency are always constrained by uncontrolled off-site signal leakage and inefficient on-site circuitry activation. Thus, the endogenously controllable on-site exposure/activation of DNA circuits is highly desirable for achieving the selective imaging of live cells. Herein, an endogenously activated DNAzyme strategy was facilely integrated with a catalytic DNA circuit for guiding the selective and efficient microRNA imaging in vivo. To prevent the off-site activation, the circuitry constitute was initially caged without sensing functions, which could be selectively liberated by DNAzyme amplifier to guarantee the high-contrast microRNA imaging in target cells. This intelligent on-site modulation strategy can tremendously expand these molecularly engineered circuits in biological systems.  相似文献   

8.
Aberrant expressions of biomolecules occur much earlier than tumor visualized size and morphology change, but their common measurement strategies such as biopsy suffer from invasive sampling process. In vivo imaging of slight biomolecule expression difference is urgently needed for early cancer detection. Fluorescence of rare earth nanoparticles (RENPs) in second near-infrared (NIR-II) region makes them appropriate tool for in vivo imaging. However, the incapacity to couple with signal amplification strategies, especially programmable signal amplification strategies, limited their application in lowly expressed biomarkers imaging. Here we develop a 980/808 nm NIR programmed in vivo microRNAs (miRNAs) magnifier by conjugating activatable DNAzyme walker set to RENPs, which achieves more effective NIR-II imaging of early stage tumor than size monitoring imaging technique. Dye FD1080 (FD1080) modified substrate DNA quenches NIR-II downconversion emission of RENPs under 808 nm excitation. The miRNA recognition region in DNAzyme walker is sealed by a photo-cleavable strand to avoid “false positive” signal in systemic circulation. Upconversion emission of RENPs under 980 nm irradiation activates DNAzyme walker for miRNA recognition and amplifies NIR-II fluorescence recovery of RENPs via DNAzyme catalytic reaction to achieve in vivo miRNA imaging. This strategy demonstrates good application potential in the field of early cancer detection.  相似文献   

9.
《中国化学快报》2023,34(10):108200
DNAzyme machines play critical roles in the fields of cell imaging, disease diagnosis, and cancer therapy. However, the applications of DNAzyme machines are limited by the nucleases-induced degradation, non-specific binding of proteins, and insufficient provision of cofactors. Herein, protected DNAzyme machines with different cofactor designs (referred to as ProDs) were nanoengineered by the construction of multifunctional metal-phenolic nanoshells to deactivate the interferential proteins, including nucleases and non-specific binding proteins. Moreover, the nanoshells not only facilitate the cellular internalization of ProDs but provide specific metal ions acting as cofactors of the designed DNAzymes. Cellular imaging results demonstrated that ProDs could effectively and simultaneously monitor multiple tumor-related microRNAs in living cells. This facile and rapid strategy that encapsulates DNAzyme machines into the protective metal-phenolic nanoshells is anticipated to extend to a wide range of functional nucleic acids-based biomedical applications.  相似文献   

10.
Fluorescence resonance energy transfer (FRET) has been used to study the global folding of an uranyl (UO22+)‐specific 39E DNAzyme in the presence of Mg2+, Zn2+, Pb2+, or UO22+. At pH 5.5 and physiological ionic strength (100 mM Na+), two of the three stems in this DNAzyme folded into a compact structure in the presence of Mg2+ or Zn2+. However, no folding occurred in the presence of Pb2+ or UO22+; this is analogous to the “lock‐and‐key” catalysis mode first observed in the Pb2+‐specific 8–17 DNAzyme. However, Mg2+ and Zn2+ exert different effects on the 8–17 and 39E DNAzymes. Whereas Mg2+ or Zn2+‐dependent folding promoted 8–17 DNAzyme activity, the 39E DNAzyme folding induced by Mg2+ or Zn2+ inhibited UO22+‐specific activity. Group IIA series of metal ions (Mg2+, Ca2+, Sr2+) also caused global folding of the 39E DNAzyme, for which the apparent binding affinity between these metal ions and the DNAzyme decreases as the ionic radius of the metal ions increases. Because the ionic radius of Sr2+ (1.12 Å) is comparable to that of Pb2+ (1.20 Å), but contrary to Pb2+, Sr2+ induces the DNAzyme to fold under identical conditions, ionic size alone cannot account for the unique folding behaviors induced by Pb2+ and UO22+. Under low ionic strength (30 mM Na+), all four metal ions (Mg2+, Zn2+, Pb2+, and UO22+), caused 39E DNAzyme folding, suggesting that metal ions can neutralize the negative charge of DNA‐backbone phosphates in addition to playing specific catalytic roles. Mg2+ at low (<2 mM ) concentration promoted UO22+‐specific activity, whereas Mg2+ at high (>2 mM ) concentration inhibited the UO22+‐specific activity. Therefore, the lock‐and‐key mode of DNAzymes depends on ionic strength, and the 39E DNAzyme is in the lock‐and‐key mode only at ionic strengths of 100 mM or greater.  相似文献   

11.
A peroxidase-mimic DNAzyme is a G-quadruplex (G4) DNA–hemin complex, in which the G4-DNA resembles an apoenzyme, and hemin is the cofactor for hydrogen peroxide (H2O2) catalysis. Twenty-one-mer CatG4 is a well-proven G4-DNA as well as a hemin-binding aptamer for constituting a DNAzyme. This work studied if a multivalent DNAzyme with accelerated catalysis could be constructed using a multimeric CatG4 with hemin. We compared CatG4 monomer, dimer, trimer, and tetramer, which were prepared by custom oligo synthesis, for G4 structure formation. According to circular dichroism (CD) analysis, we found that a CatG4 multimer exhibited more active G4 conformation than the sum effect of equal-number CatG4 monomers. However, the DNAzyme kinetics was not improved monotonically along with the subunit number of a multimeric CatG4. It was the trivalent DNAzyme, trimeric CatG4:hemin, resulting in the rapidest H2O2 catalysis instead of a tetravalent one. We discovered that the trivalent DNAzyme’s highest catalytic rate was correlated to its most stable hemin-binding G4 structure, evidenced by CD melting temperature analysis. Finally, a trivalent DNAzyme-based colorimetric glucose assay with a detection limit as low as 10 μM was demonstrated, and this assay did not need adenosine 5′-tri-phosphate disodium salt hydrate (ATP) as a DNAzyme boosting agent.  相似文献   

12.
The Cu2+‐dependent ligation DNAzyme is implemented as a biocatalyst for the colorimetric or chemiluminescence detection of Cu2+ ions, Hg2+ ions, or cocaine. These sensing platforms are based on the structural tailoring of the sequence of the Cu2+‐dependent ligation DNAzyme for specific analytes. The tethering of a subunit of the hemin/G‐quadruplex DNAzyme to the ligation DNAzyme sequence, and the incorporation of an imidazole‐functionalized nucleic‐acid sequence, which acts as a co‐substrate for the ligation DNAzyme that is tethered to the complementary hemin/G‐quadruplex subunit. In the presence of different analytes, Cu2+ ions, Hg2+ ions, or cocaine, the pretailored Cu2+‐dependent ligation DNAzyme sequence stimulates the respective ligation process by combining the imidazole‐functionalized co‐substrate with the ligation DNAzyme sequence. These reactions lead to the self‐assembly of stable hemin/G‐quadruplex DNAzyme nanostructures that enable the colorimetric analysis of the substrate through the DNAzyme‐catalyzed oxidation of 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonic acid), ABTS2?, by H2O2 into the colored product ABTS.?, or the chemiluminescence detection of the substrate through the DNAzyme‐catalyzed oxidation of luminol by H2O2. The detection limits for the sensing of Cu2+ ions, Hg2+ ions, and cocaine correspond to 1 nM , 10 nM and 2.5 μM , respectively. These different sensing platforms also reveal impressive selectivities.  相似文献   

13.
A novel enzyme-free amplification strategy was designed for sensitive electrochemical detection of deoxyribonucleic acid (DNA) based on Zn2+ assistant DNA recycling via target-triggered assembly of mutated DNAzyme. A gold electrode was used to immobilize molecular beacon (MB) as the recognition probe and perform the amplification procedure. In the presence of target DNA, the hairpin probe 1 was opened, and the DNAzyme was liberated from the caged structure. The activated DNAzyme first hybridized and then cleaved the MB in the presence of cofactor Zn2+. After cleavage, the MB was cleaved into two pieces and the ferrocene (Fc) labeled piece dissociated from the gold electrode, thus obviously decreasing the Fc signal and forming a free DNAzyme strand. Finally, each target-induced activated DNAzyme underwent many cycles to trigger the cleavage of many MB substrates. Therefore, the peak current of Fc dramatically decreased to approximately zero. The strategy showed a detection limit at 35 fM levels, which was about 2 orders of magnitude lower than that of the conventional hybridization without Zn2+-based amplification. The Zn2+ assistant DNA recycling offers a versatile platform for DNA detection in a cost-effective manner, and has a promising application in clinical diagnosis.  相似文献   

14.
While many protein enzymes exert their functions through multimerization, which improves both selectivity and activity, this has not yet been demonstrated for other naturally occurring catalysts. Here, we report a multimerization effect applied to catalytic DNAs (or DNAzymes) and demonstrate that the enzymatic efficiency of G-quadruplexes (GQs) in interaction with the hemin cofactor is remarkably enhanced by homodimerization. The resulting non-covalent dimeric GQ–DNAzyme system provides hemin with a structurally defined active site in which both the cofactor (hemin) and the oxidant (H2O2) are activated. This new biocatalytic system efficiently performs peroxidase- and peroxygenase-type biotransformations of a broad range of substrates, thus providing new perspectives for biotechnological application of GQs.

Cofactor hemin is sandwiched between 3′ homodimeric G-quadruplexes, leading to an excellent DNAzyme as a mimic of peroxidase and monooxygenase.  相似文献   

15.
Bioorthogonal control of metal‐ion sensors for imaging metal ions in living cells is important for understanding the distribution and fluctuation of metal ions. Reported here is the endogenous and bioorthogonal activation of a DNAzyme fluorescent sensor containing an 18‐base pair recognition site of a homing endonuclease (I‐SceI), which is found by chance only once in 7×1010 bp of genomic sequences, and can thus form a near bioorthogonal pair with I‐SceI for DNAzyme activation with minimal effect on living cells. Once I‐SceI is expressed inside cells, it cleaves at the recognition site, allowing the DNAzyme to adopt its active conformation. The activated DNAzyme sensor is then able to specifically catalyze cleavage of a substrate strand in the presence of Mg2+ to release the fluorophore‐labeled DNA fragment and produce a fluorescent turn‐on signal for Mg2+. Thus I‐SceI bioorthogonally activates the 10–23 DNAzyme for imaging of Mg2+ in HeLa cells.  相似文献   

16.
DNAzyme‐capped mesoporous SiO2 nanoparticles (MP SiO2 NPs) are applied as stimuli‐responsive containers for programmed synthesis. Three types of MP SiO2 NPs are prepared by loading the NPs with Cy3‐DBCO (DBCO=dibenzocyclooctyl), Cy5‐N3, and Cy7‐N3, and capping the NP containers with the Mg2+, Zn2+, and histidine‐dependent DNAzyme sequences, respectively. In the presence of Mg2+ and Zn2+ ions as triggers, the respective DNAzyme‐capped NPs are unlocked, leading to the “click” reaction product Cy3‐Cy5. In turn, in the presence of Mg2+ ions and histidine as triggers the second set of DNAzyme‐capped NPs is unlocked leading to the Cy3‐Cy7 conjugated product. The unloading of the respective NPs and the time‐dependent formation of the products are followed by fluorescence spectroscopy (FRET). A detailed kinetic model for the formation of the different products is formulated and it correlates nicely with the experimental results.  相似文献   

17.
DNA-based probes have gained significant attention as versatile tools for biochemical analysis, benefiting from their programmability and biocompatibility. However, most existing DNA-based probes rely on fluorescence as the signal output, which can be problematic due to issues like autofluorescence and scattering when applied in complex biological materials such as living cells or tissues. Herein, we report the development of bioluminescent nucleic acid (bioLUNA) sensors that offer laser excitation-independent and ratiometric imaging of the target in vivo. The system is based on computational modelling and mutagenesis investigations of a genetic fusion between circular permutated Nano-luciferase (NLuc) and HaloTag, enabling the conjugation of the protein with a DNAzyme. In the presence of Zn2+, the DNAzyme sensor releases the fluorophore-labelled strand, leading to a reduction in bioluminescent resonance energy transfer (BRET) between the luciferase and fluorophore. Consequently, this process induces ratiometric changes in the bioluminescent signal. We demonstrated that this bioLUNA sensor enabled imaging of both exogenous Zn2+ in vivo and endogenous Zn2+ efflux in normal epithelial prostate and prostate tumors. This work expands the DNAzyme sensors to using bioluminescence and thus has enriched the toolbox of nucleic acid sensors for a broad range of biomedical applications.  相似文献   

18.
《中国化学快报》2023,34(6):107906
DNAzyme amplifiers have been extensively explored as a useful sensing platform, but single DNAzyme amplifier is limited in biosensing applications by its low sensitivity. Herein, a cascade DNAzyme amplifier was designed by exploiting concurrent amplification cycle principles of toehold-mediated strand displacement reaction (TSDR) and Zn2+-assisted DNAzyme cycle with lower cost and simpler procedures. Compared with single DNAzyme amplifier, the proposed TSDR-propelled cascade DNAzyme amplifier exhibited higher sensitivity by releasing more DNAzyme through TSDR to cleave substrate strand during the DNAzyme cycle. Base on this, let-7a could be sensitively detected in the range of 5–50 nmol/L with a detection limit of 64 pmol/L. Furthermore, the dual signal amplification strategy of the cascade DNAzyme amplifier exhibited excellent selectivity to distinguish single-base mismatched DNA strands, which has been successfully applied to the determination of let-7a in blood serum, showing high promise in early cancer diagnosis.  相似文献   

19.
DNAzymes have enjoyed success as metal ion sensors outside cells. Their susceptibility to metal-dependent cleavage during delivery into cells has limited their intracellular applications. To overcome this limitation, a near-infrared (NIR) photothermal activation method is presented for controlling DNAzyme activity in living cells. The system consists of a three-stranded DNAzyme precursor (TSDP), the hybridization of which prevents the DNAzyme from being active. After conjugating the TSDP onto gold nanoshells and upon NIR illumination, the increased temperature dehybridizes the TSDP to release the active DNAzyme, which then carries out metal-ion-dependent cleavage, resulting in releasing the cleaved product containing a fluorophore. Using this construct, detecting Zn2+ in living HeLa cells is demonstrated. This method has expanded the DNAzyme versatility for detecting metal ions in biological systems under NIR light that exhibits lower phototoxicity and higher tissue penetration ability.  相似文献   

20.
A G-quadruplex-assisted enzyme strand recycling strategy was developed for amplified label-free fluorescent detection of uranyl ion (UO22+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号