首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing methodologies for on-demand control of the release of a molecular guest requires the rational design of stimuli-responsive hosts with functional cavities. While a substantial number of responsive metallacages have already been described, the case of coordination-tweezers has been less explored. Herein, we report the first example of a redox-triggered guest release from a metalla-assembled tweezer. This tweezer incorporates two redox-active panels constructed from the electron-rich 9-(1,3-dithiol-2-ylidene)fluorene unit that are facing each other. It dimerizes spontaneously in solution and the resulting interpenetrated supramolecular structure can dissociate in the presence of an electron-poor planar unit, forming a 1:1 host–guest complex. This complex dissociates upon tweezer oxidation/dimerization, offering an original redox-triggered molecular delivery pathway.  相似文献   

2.
Controlling the guest expulsion process from a receptor is of critical importance in various fields. Several coordination cages have been recently designed for this purpose, based on various types of stimuli to induce the guest release. Herein, we report the first example of a redox‐triggered process from a coordination cage. The latter integrates a cavity, the panels of which are based on the extended tetrathiafulvalene unit (exTTF). The unique combination of electronic and conformational features of this framework (i.e. high π‐donating properties and drastic conformational changes upon oxidation) allows the reversible disassembly/reassembly of the redox‐active cavity upon chemical oxidation/reduction, respectively. This cage is able to bind the three‐dimensional B12F122? anion in a 1:2 host/guest stoichiometry. The reversible redox‐triggered disassembly of the cage could also be demonstrated in the case of the host–guest complex, offering a new option for guest‐delivering control.  相似文献   

3.
pH‐responsive molecular tweezers have been proposed as an approach for targeting drug‐delivery to tumors, which tend to have a lower pH than normal cells. We performed a computational study of a pH‐responsive molecular tweezer using ab initio quantum chemistry in the gas‐phase and molecular dynamics (MD) simulations in solution. The binding free energy in solution was calculated using steered MD. We observe, in atomistic detail, the pH‐induced conformational switch of the tweezer and the resulting release of the drug molecule. Even when the tweezer opens, the drug molecule remains near a hydrophobic arm of the molecular tweezer. Drug release cannot occur, it seems, unless the tweezer is in a hydrophobic environment with low pH. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
A light‐responsive system constructed from hydrogen‐bonded azo‐macrocycles demonstrates precisely controlled propensity in molecular encapsulation and release process. A significant decrease in the size of the cavity is observed in the course of the E→Z photoisomerization based on the results from DFT calculations and traveling wave ion mobility mass spectrometry. These macrocyclic hosts exhibit a rare 2:1 host–guest stoichiometry and guest‐dependent slow or fast exchange on the NMR timescale. With the slow host–guest exchange and switchable shape change of the cavity, quantitative release and capture of bipyridinium guests is achieved with the maximum release of 68 %. This work underscores the importance of slow host–guest exchange on realizing accurate release of organic cations in a stepwise manner under light irradiation. The light‐responsive system established here could advance further design of novel photoresponsive molecular switches and mechanically interlocked molecules.  相似文献   

5.
A chiral electrochemically responsive molecular universal joint (EMUJ) was synthesized by fusing a macrocyclic pillar[6]arene (P[6]) to a ferrocene‐based side ring. A single crystal of an enantiopure EMUJ was successfully obtained, which allowed, for the first time, the definitive correlation between the absolute configuration and the circular dichroism spectrum of a P[6] derivative to be determined. The self‐inclusion and self‐exclusion conformational change of the EMUJ led to a chiroptical inversion of the P[6] moiety, which could be manipulated by both solvents and changes in temperature. The EMUJ also displayed a unique redox‐triggered reversible in/out conformational switching, corresponding to an occupation/voidance switching of the P[6] cavity, respectively. This phenomenon is an unprecedented electrochemical manipulation of the capture and release of guest molecules by supramolecular hosts.  相似文献   

6.
We present the self‐assembly of redox‐responsive polymer nanocontainers comprising a cyclodextrin vesicle core and a thin reductively cleavable polymer shell anchored via host–guest recognition on the vesicle surface. The nanocontainers are of uniform size, show high stability, and selectively respond to a mild reductive trigger as revealed by dynamic light scattering, transmission electron microscopy, atomic force microscopy, a quantitative thiol assay, and fluorescence spectroscopy. Live cell imaging experiments demonstrate a specific redox‐responsive release and cytoplasmic delivery of encapsulated hydrophilic payloads, such as the pH‐probe pyranine, and the fungal toxin phalloidin. Our results show the high potential of these stimulus‐responsive nanocontainers for cell biological applications requiring a controlled delivery.  相似文献   

7.
A new responsive material composed of an amphiphilic light‐switchable dithienylethene unit functionalized with a hydrophobic cholesterol unit and a hydrophilic poly(ethylene glycol)‐modified pyridinium group has been designed. This unique single‐molecule system shows responsive light‐switchable self‐assembly in both water and organic solvents. Light‐triggered reversible vesicle formation in aqueous solutions is reported. The molecule shows a different behavior in apolar aromatic solvents, in which light‐controlled formation of organogel fibers is observed. The light‐triggered aggregation behavior of this molecule demonstrates that control of a supramolecular structure with light can be achieved in both aqueous and organic media and that this ability can be present in a single molecule. This opens the way toward the effective development of new strategies in soft nanotechnology for applications in controlled chemical release systems.  相似文献   

8.
Triquinacene is a concave tricyclic hydrocarbon with diverse photoreactivity. In the cavity of an electron‐accepting molecular host, triquinacene was specifically photooxidized at the peripheral allylic position into an alcohol, 1‐hydroxytriquinacene, via guest‐to‐host electron transfer. The unusual reactivity stems from the extremely electron‐deficient triazine panel ligand of the host cage, which allows the cage to function as a good electron acceptor. Thus, self‐assembled coordination cages can serve not only as molecular‐sized reaction vessels but also function electronically as redox media. Dissolved molecular oxygen is indispensable for the photoreaction and immediately traps a photogenerated radical.  相似文献   

9.
The assembly of a discrete hydrogen‐bonded molecular tube from eight small identical monomers is reported. Tube assembly was accomplished by means of selective heterodimerization between isocytosine and ureidopyrimidinone hydrogen‐bonding motifs embedded in an enantiopure bicyclic building block, leading to the selective formation of an octameric supramolecular tube. Upon introduction of a fullerene guest molecule, the octameric tube rearranges into a tetrameric inclusion complex and the hydrogen‐bonding mode is switched. The dynamic behavior of the system is further explored in solvent‐ and guest‐responsive self‐sorting experiments.  相似文献   

10.
The development of artificial nanomotor systems that are stimuli‐responsive is still posing many challenges. Herein, we demonstrate the self‐assembly of a redox‐responsive stomatocyte nanomotor system, which can be used for triggered drug release under biological reducing conditions. The redox sensitivity was introduced by incorporating a disulfide bridge between the hydrophilic poly(ethylene glycol) block and the hydrophobic polystyrene block. When incubated with the endogenous reducing agent glutathione at a concentration comparable to that within cells, the external PEG shells of these stimuli‐responsive nanomotors are cleaved. The specific bowl‐shaped stomatocytes aggregate after the treatment with glutathione, leading to the loss of motion and triggered drug release. These novel redox‐responsive nanomotors can not only be used for remote transport but also for drug delivery, which is promising for future biomedical applications.  相似文献   

11.
A liposome‐based co‐delivery system composed of a fusogenic liposome encapsulating ATP‐responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP‐mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein–DNA complex core containing an ATP‐responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell‐penetrating peptide‐modified fusogenic liposomal membrane was coated on the core, which had an acid‐triggered fusogenic potential with the ATP‐loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH‐sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.  相似文献   

12.
A nanocage coupling effect from a redox RuII‐PdII metal–organic cage (MOC‐16) is demonstrated for efficient photochemical H2 production by virtue of redox–guest modulation of the photo‐induced electron transfer (PET) process. Through coupling with photoredox cycle of MOC‐16, tetrathiafulvalene (TTF) guests act as electron relay mediator to improve the overall electron transfer efficiency in the host–guest system in a long‐time scale, leading to significant promotion of visible‐light driven H2 evolution. By contrast, the presence of larger TTF‐derivatives in bulk solution without host–guest interactions results in interference with PET process of MOC‐16, leading to inefficient H2 evolution. Such interaction provides an example to understand the interplay between the redox‐active nanocage and guest for optimization of redox events and photocatalytic activities in a confined chemical nanoenvironment.  相似文献   

13.
The controlled secondary self‐assembly of amphiphilic molecules in solution is theoretically and practically significant in amphiphilic molecular applications. An amphiphilic β‐cyclodextrin (β‐CD) dimer, namely LA‐(CD)2, has been synthesized, wherein one lithocholic acid (LA) unit is hydrophobic and two β‐CD units are hydrophilic. In an aqueous solution at room temperature, LA‐(CD)2 self‐assembles into spherical micelles without ultrasonication. The primary micelles dissociates and then secondarily form self‐assemblies with branched structures under ultrasonication. The branched aggregates revert to primary micelles at high temperature. The ultrasound‐driven secondary self‐assembly is confirmed by transmission electron microscopy, dynamic light scattering, 1H NMR spectroscopy, and Cu2+‐responsive experiments. Furthermore, 2D NOESY NMR and UV/Vis spectroscopy results indicate that the formation of the primary micelles is driven by hydrophilic–hydrophobic interactions, whereas host–guest interactions promote the formation of the secondary assemblies. Additionally, ultrasonication is shown to be able to effectively destroy the primary hydrophilic–hydrophobic balances while enhancing the host–guest interaction between the LA and β‐CD moieties at room temperature.  相似文献   

14.
Selective tumor targeting and drug delivery are critical for cancer treatment. Stimulus‐sensitive nanoparticle (NP) systems have been designed to specifically respond to significant abnormalities in the tumor microenvironment, which could dramatically improve therapeutic performance in terms of enhanced efficiency, targetability, and reduced side‐effects. We report the development of a novel L ‐cysteine‐based poly (disulfide amide) (Cys‐PDSA) family for fabricating redox‐triggered NPs, with high hydrophobic drug loading capacity (up to 25 wt % docetaxel) and tunable properties. The polymers are synthesized through one‐step rapid polycondensation of two nontoxic building blocks: L ‐cystine ester and versatile fatty diacids, which make the polymer redox responsive and give it a tunable polymer structure, respectively. Alterations to the diacid structure could rationally tune the physicochemical properties of the polymers and the corresponding NPs, leading to the control of NP size, hydrophobicity, degradation rate, redox response, and secondary self‐assembly after NP reductive dissociation. In vitro and in vivo results demonstrate these NPs’ excellent biocompatibility, high selectivity of redox‐triggered drug release, and significant anticancer performance. This system provides a promising strategy for advanced anticancer theranostic applications.  相似文献   

15.
Molecular organization of donor and acceptor chromophores in self‐assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light‐harvesting systems. With this in mind, a redox‐active porous interpenetrated metal–organic framework (MOF), {[Cd(bpdc)(bpNDI)] ? 4.5 H2O ? DMF}n ( 1 ) has been constructed from a mixed chromophoric system. The μ‐oxo‐bridged secondary building unit, {Cd2(μ‐OCO)2}, guides the parallel alignment of bpNDI (N,N′‐di(4‐pyridyl)‐1,4,5,8‐naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH2=4,4′‐biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter‐net electron transfer. Encapsulation of electron‐donating aromatic molecules in the electron‐deficient channels of 1 leads to a perfect donor–acceptor co‐facial organization, resulting in long‐lived charge‐separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties.  相似文献   

16.
Host–guest interactions of a molecular tweezer complex 1 with various planar organic molecules including polyaromatic hydrocarbons (PAHs) were investigated by 1D and 2D 1H NMR spectroscopy, UV/Vis absorption and emission titration studies. 2D and DOSY NMR spectroscopies support the sandwiched binding mode based on 1:1 host–guest interactions. The binding constants (KS) of complex 1 for various PAHs were determined by NMR titration studies and the values were found to span up to an order of 104 M ?1 for coronene to no observable interaction for benzene, indicating that the π‐surface area is important for such host–guest interactions. The substituent effect on the host–guest interaction based on the guest series of 9‐substituted anthracenes was also studied. In general, a stronger interaction was observed for the anthracene guest with electron‐donating groups, although steric and π‐conjugation factors cannot be completely excluded. The photophysical responses of complex 1 upon addition of various PAHs were measured by UV/Vis and emission titration studies. The UV/Vis absorption spectra were found to show a drop in absorbance of the metal‐to‐ligand charge‐transfer (MLCT) and ligand‐to‐ligand charge‐transfer (LLCT) admixture band upon addition of various guest molecules to 1 , whereas the emission behavior was found to change differently depending on the guest molecules, showing emission enhancement and/or quenching. It was found that emission quenching occurred either via energy transfer or electron transfer pathway or both, while emission enhancement was caused by the increase in rigidity of complex 1 as a result of host–guest interaction.  相似文献   

17.
Supramolecular complexes consisting of a single‐stranded oligothymine ( dTn ) as the host template and an array of guest molecules equipped with a complementary diaminotriazine hydrogen‐bonding unit have been studied with electrospray‐ionization mass spectrometry (ESI‐MS). In this hybrid construct, a supramolecular stack of guest molecules is hydrogen bonded to dTn . By changing the hydrogen‐bonding motif of the DNA host template or the guest molecules, selective hydrogen bonding was proven. We were able to detect single‐stranded‐DNA (ssDNA)–guest complexes for strands with lengths of up to 20 bases, in which the highest complex mass detected was 15 kDa; these complexes constitute 20‐component self‐assembled objects. Gas‐phase breakdown experiments on single‐ and multiple‐guest–DNA assemblies gave qualitative information on the fragmentation pathways and the relative complex stabilities. We found that the guest molecules are removed from the template one by one in a highly controlled way. The stabilities of the complexes depend mainly on the molecular weight of the guest molecules, a fact suggesting that the complexes collapse in the gas phase. By mixing two different guests with the ssDNA template, a multicomponent dynamic library can be created. Our results demonstrate that ESI‐MS is a powerful tool to analyze supramolecular ssDNA complexes in great detail.  相似文献   

18.
The mechanism of the nitrene‐group transfer reaction from an organic azide to isonitrile catalyzed by a ZrIV d0 complex carrying a redox‐active ligand was studied by using quantum chemical molecular‐modeling methods. The key step of the reaction involves the two‐electron reduction of the azide moiety to release dinitrogen and provide the nitrene fragment, which is subsequently transferred to the isonitrile substrate. The reducing equivalents are supplied by the redox‐active bis(2‐iso‐propylamido‐4‐methoxyphenyl)‐amide ligand. The main focus of this work is on the mechanism of this redox reaction, in particular, two plausible mechanistic scenarios are considered: 1) the metal center may actively participate in the electron‐transfer process by first recruiting the electrons from the redox‐active ligand and becoming formally reduced in the process, followed by a classical metal‐based reduction of the azide reactant. 2) Alternatively, a non‐classical, direct ligand‐to‐ligand charge‐transfer process can be envisioned, in which no appreciable amount of electron density is accumulated at the metal center during the course of the reaction. Our calculations indicate that the non‐classical ligand‐to‐ligand charge‐transfer mechanism is much more favorable energetically. Utilizing a series of carefully constructed putative intermediates, both mechanistic scenarios were compared and contrasted to rationalize the preference for ligand‐to‐ligand charge‐transfer mechanism.  相似文献   

19.
A cyclodextrin‐peptide hybrid (CD‐peptide) bearing three units of γ‐cyclodextrin, cholic acid, and a dansyl fluorophore in the side chain has been prepared. In this novel CD‐peptide, the cholic acid unit acts as an internal guest and forms an intramolecular inclusion complex with γ‐cyclodextrin in the CD‐peptide. This intramolecular complex works as a host‐guest bridge in the CD‐peptide and remarkably stabilizes the α‐helix structure of the CD‐peptide.  相似文献   

20.
Tetraannulation of a resorcinarene‐octaamino cavitand with ferrocenecarboxaldehyde allows the preparation of a tetrabenzimidazole‐resorcinarene cavitand with four ferrocenyl moieties directly linked to the C2 atom of the imidazole units. Oxidation of the four ferrocenyl moieties produces important structural modifications of the molecule, as indicated by DFT calculations performed for the neutral and tetraoxidized forms of the cavitand. By means of 1H NMR spectroscopic analysis, the encapsulating properties of the new tetraferrocenyl‐resorcinarene cavitand toward a series of ammonium salts were evaluated, and a clear cutoff point in binding affinity with respect to size was observed. Cyclic voltammetric studies allowed us to estimate the relative association constants for the neutral and oxidized forms of the cavitand, thus indicating that the guest was bound to the neutral (reduced) state of the cavitand and was released from the oxidized form. These redox‐addressable conformational and binding properties of the resorcinarene‐tetraferrocenyl cavitand constitute all the necessary features of a redox‐switchable molecular gripper. By means of mass‐spectrometric analysis, we could unambiguously confirm the molar stoichiometry of the host–guest complex (1:1) and assess the strong guest encapsulation, as indicated by triggering the covalent coupling between host and guest in the gas phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号