首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA origami has rapidly emerged as a powerful and programmable method to construct functional nanostructures. However, the size limitation of approximately 100 nm in classic DNA origami hampers its plasmonic applications. Herein, we report a jigsaw‐puzzle‐like assembly strategy mediated by gold nanoparticles (AuNPs) to break the size limitation of DNA origami. We demonstrated that oligonucleotide‐functionalized AuNPs function as universal joint units for the one‐pot assembly of parent DNA origami of triangular shape to form sub‐microscale super‐origami nanostructures. AuNPs anchored at predefined positions of the super‐origami exhibited strong interparticle plasmonic coupling. This AuNP‐mediated strategy offers new opportunities to drive macroscopic self‐assembly and to fabricate well‐defined nanophotonic materials and devices.  相似文献   

2.
DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.  相似文献   

3.
A versatile, bottom‐up approach allows the controlled fabrication of polydopamine (PD) nanostructures on DNA origami. PD is a biosynthetic polymer that has been investigated as an adhesive and promising surface coating material. However, the control of dopamine polymerization is challenged by the multistage‐mediated reaction mechanism and diverse chemical structures in PD. DNA origami decorated with multiple horseradish peroxidase‐mimicking DNAzyme motifs was used to control the shape and size of PD formation with nanometer resolution. These fabricated PD nanostructures can serve as “supramolecular glue” for controlling DNA origami conformations. Facile liberation of the PD nanostructures from the DNA origami templates has been achieved in acidic medium. This presented DNA origami‐controlled polymerization of a highly crosslinked polymer provides a unique access towards anisotropic PD architectures with distinct shapes that were retained even in the absence of the DNA origami template.  相似文献   

4.
5.
Multiplication of functional units through self‐assembly is a powerful way to new properties and functions. In particular, self‐organization of components decorated with recognition groups leads to multivalent entities, amenable to strong and selective binding with multivalent targets, such as protein receptors. Here we describe an efficient, supramolecular, one‐pot valency multiplication process proceeding through self‐organization of monovalent components into well‐defined, grid‐shaped [2×2] tetranuclear complexes bearing eight sugar residues for multivalent interaction with the tetrameric lectin, concanavalin A (Con A). The grids are stable in water under physiological pH at a relatively high concentration, but dissociate readily at slightly more acidic pH or upon dilution below a certain threshold, in a type of on–off behavior. The carbohydrate‐decorated grids interact strongly and selectively with Con A forming triply supramolecular bio‐hybrid polymeric networks, which lead to a highly specific phase‐separation and quasi‐quantitative precipitation of Con A out of solution. Dramatic effects of valency number on agglutination properties were demonstrated by comparison of grids with divalent carbohydrates of covalent and non‐covalent (L ‐shaped, mononuclear zinc complex) scaffolds. The results presented here provide prototypical illustration of the power of multivalency generation by self‐assembly leading to defined arrays of functional groups and binding patterns.  相似文献   

6.
The arrangement of DNA‐based nanostructures into extended higher order assemblies is an important step towards their utilization as functional molecular materials. We herein demonstrate that by electrostatically controlling the adhesion and mobility of DNA origami structures on mica surfaces by the simple addition of monovalent cations, large ordered 2D arrays of origami tiles can be generated. The lattices can be formed either by close‐packing of symmetric, non‐interacting DNA origami structures, or by utilizing blunt‐end stacking interactions between the origami units. The resulting crystalline lattices can be readily utilized as templates for the ordered arrangement of proteins.  相似文献   

7.
Macroscopic supramolecular assembly (MSA) is a recent development in supramolecular chemistry to associate visible building blocks through non‐covalent interactions in a multivalent manner. Although various substrates (e.g. hydrogels, rigid materials) have been used, a general design rule of building blocks in MSA systems and interpretation of the assembly mechanism are lacking and are required. Herein we design three model systems with varied elastic modulus and correlated the MSA probability with the elasticity. Based on the effects of substrate deformability on multivalency, we have proposed an elastic‐modulus‐dependent rule that building blocks below a critical modulus of 2.5 MPa can achieve MSA for the used host/guest system. Moreover, this MSA rule applies well to the design of materials for fast underwater adhesion: Soft substrates (0.5 MPa) can achieve underwater adhesion within 10 s with one order of magnitude higher strength than that of rigid substrates (2.5 MPa).  相似文献   

8.
Ordered DNA origami arrays have the potential to compartmentalize space into distinct periodic domains that can incorporate a variety of nanoscale objects. Herein, we used the cavities of a preassembled 2D DNA origami framework to incorporate square‐shaped DNA origami structures (SQ‐origamis). The framework was self‐assembled on a lipid bilayer membrane from cross‐shaped DNA origami structures (CR‐origamis) and subsequently exposed to the SQ‐origamis. High‐speed AFM revealed the dynamic adsorption/desorption behavior of the SQ‐origamis, which resulted in continuous changing of their arrangements in the framework. These dynamic SQ‐origamis were trapped in the cavities by increasing the Mg2+ concentration or by introducing sticky‐ended cohesions between extended staples, both from the SQ‐ and CR‐origamis, which enabled the directed docking of the SQ‐origamis. Our study offers a platform to create supramolecular structures or systems consisting of multiple DNA origami components.  相似文献   

9.
During the development of structural DNA nanotechnology, the emerging of scaffolded DNA origami is marvelous. It utilizes DNA double helix inherent specificity of Watson‐Crick base pairing and structural features to create self‐assembling structures at the nanometer scale exhibiting the addressable character. However, the assembly of DNA origami is disorderly and unpredictable. Herein, we present a novel strategy to assemble the DNA origami using rolling circle amplification based DNA nanoribbons as the linkers. Firstly, long single‐stranded DNA from Rolling Circle Amplification is annealed with several staples to form kinds of DNA nanoribbons with overhangs. Subsequently, the rectangle origami is formed with overhanged staple strands at any edge that would hybridize with the DNA nanoribbons. By mixing them up, we illustrate the one‐dimensional even two‐dimensional assembly of DNA origami with good orientation.  相似文献   

10.
Mechanically interlocked supramolecular assemblies are appealing building blocks for creating functional nanodevices. Herein, we describe the multistep assembly of large DNA origami rotaxanes that are capable of programmable structural switching. We validated the topology and structural integrity of these rotaxanes by analyzing the intermediate and final products of various assembly routes by electrophoresis and electron microscopy. We further analyzed two structure‐switching behaviors of our rotaxanes, which are both mediated by DNA hybridization. In the first mechanism, the translational motion of the macrocycle can be triggered or halted at either terminus. In the second mechanism, the macrocycle can be elongated after completion of the rotaxane assembly, giving rise to a unique structure that is otherwise difficult to access.  相似文献   

11.
DNA self-assembly allows the construction of nanometre-scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single-stranded loops embedded in a double-stranded DNA template and is programmed by a set of double-stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T-junctions formed by hybridization of single-stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T-junction origami motifs and that assembly can be performed at room temperature.  相似文献   

12.
Two‐dimensional (2D) organic nanomaterials are attracting increasing research interest and expected to be the ideal candidate for future‐ proofed flexible electronics and biotechnologies. Owing to the complex molecular structures and multiple intermolecular interactions in organic systems, deeper understanding of rational molecular design and assembly principles is urgently required. In this review, a collection of molecular packing mode in the 2D organic nanomaterials via supramolecular assembly is presented, so as to help explicit the relationship among molecular structures, supramolecular interactions and molecular packing motifs in 2D assembly systems. We also provide a rational and accessible schematic model to demonstrate several typical kinds of molecular packing motifs for the prediction of the 2D morphology.  相似文献   

13.
A DNA‐based platform was developed to address fundamental aspects of early stages of cell signaling in living cells. By site‐directed sorting of differently encoded, protein‐decorated DNA origami structures on DNA microarrays, we combine the advantages of the bottom‐up self‐assembly of protein–DNA nanostructures and top‐down micropatterning of solid surfaces to create multiscale origami structures as interface for cells (MOSAIC). In a proof‐of‐principle, we use this technology to analyze the activation of epidermal growth factor (EGF) receptors in living MCF7 cells using DNA origami structures decorated on their surface with distinctive nanoscale arrangements of EGF ligand entities. MOSAIC holds the potential to present to adhered cells well‐defined arrangements of ligands with full control over their number, stoichiometry, and precise nanoscale orientation. It therefore promises novel applications in the life sciences, which cannot be tackled by conventional technologies.  相似文献   

14.
15.
Chemistry “beyond the molecule” is based on weak, noncovalent, and reversible interactions. As a consequence of these bonds being weak, structural organization by folding and self‐assembly can only be fully exploited with larger molecules that can provide multiple binding sites. Such “supramolecules” can now be synthesized and their folding into desired conformations predicted. A new level of chemistry can now be realized through the creation of non‐natural entities composed of molecular building blocks with defined secondary structures. Herein we define these building blocks as “supramolecular elements”. We anticipate that further research on such large molecules will reveal construction principles dictated by recurring motifs that govern structure formation through folding and self‐assembly. These principles are comparable to the organization of atoms in the Periodic Table of Chemical Elements and may lead to the establishment of a Periodic System of Supramolecular Elements.  相似文献   

16.
In native systems, scaffolding proteins play important roles in assembling proteins into complexes to transduce signals. This concept is yet to be applied to the assembly of functional transmembrane protein complexes in artificial systems. To address this issue, DNA origami has the potential to serve as scaffolds that arrange proteins at specific positions in complexes. Herein, we report that Kir3 K+ channel proteins are assembled through zinc‐finger protein (ZFP)‐adaptors at specific locations on DNA origami scaffolds. Specific binding of the ZFP‐fused Kir3 channels and ZFP‐based adaptors on DNA origami were confirmed by atomic force microscopy and gel electrophoresis. Furthermore, the DNA origami with ZFP binding sites nearly tripled the K+ channel current activity elicited by heterotetrameric Kir3 channels in HEK293T cells. Thus, our method provides a useful template to control the oligomerization states of membrane protein complexes in vitro and in living cells.  相似文献   

17.
DNA origami is one of the most promising recent developments in DNA self-assembly. It allows for the construction of arbitrary nanoscale patterns and objects by folding a long viral scaffold strand using a large number of short "staple" strands. Assembly is usually accomplished by thermal annealing of the DNA molecules in buffer solution. We here demonstrate that both 2D and 3D origami structures can be assembled isothermally by annealing the DNA strands in denaturing buffer, followed by a controlled reduction of denaturant concentration. This opens up origami assembly for the integration of temperature-sensitive components.  相似文献   

18.
Today, DNA nanotechnology is one of the methods of choice to achieve spatiotemporal control of matter at the nanoscale. By combining the peculiar spatial addressability of DNA origami structures with the switchable mechanical movement of small DNA motifs, we constructed reconfigurable DNA nanochambers as dynamic compartmentalization systems. The reversible extension and contraction of the inner cavity of the structures was used to control the distance‐dependent energy transfer between two preloaded fluorophores. Interestingly, single‐molecule FRET studies revealed that the kinetics of the process are strongly affected by the choice of the switchable motifs and/or actuator sequences, thus offering a valid method for fine‐tuning the dynamic properties of large DNA nanostructures. We envisage that the proposed DNA nanochambers may function as model structures for artificial biomimetic compartments and transport systems.  相似文献   

19.
A general strategy for simultaneously generating surface‐based supramolecular architectures on flat sp2‐hybridized carbon supports and independently exposing on demand off‐plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D Janus tectons that form surface‐confined supramolecular adlayers in which it is possible to simultaneously steer the 2D self‐assembly on flat C(sp2)‐based substrates and tailor the external interface above the substrate by exposure to a wide variety of small terminal chemical groups and functional moieties. This approach is validated throughout by scanning tunneling microscopy (STM) at the liquid–solid interface and molecular mechanics modeling studies. The successful self‐assembly on graphene, together with the possibility to transfer the graphene monolayer onto various substrates, should considerably extend the application of our functionalization strategy.  相似文献   

20.
Synthetic DNA has emerged as a powerful self‐assembled material for the engineering of nanoscale supramolecular devices and materials. Recently dissipative self‐assembly of DNA‐based supramolecular structures has emerged as a novel approach providing access to a new class of kinetically controlled DNA materials with unprecedented life‐like properties. So far, dissipative control has been achieved using DNA‐recognizing enzymes as energy dissipating units. Although highly efficient, enzymes pose limits in terms of long‐term stability and inhibition of enzyme activity by waste products. Herein, we provide the first example of kinetically controlled DNA nanostructures in which energy dissipation is achieved through a non‐enzymatic chemical reaction. More specifically, inspired by redox signalling, we employ redox cycles of disulfide‐bond formation/breakage to kinetically control the assembly and disassembly of tubular DNA nanostructures in a highly controllable and reversible fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号