首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
The very concept of dye and pigment chemistry that was long known to the industrial world underwent a radical revision after the discovery and commercialization of dyes such as mauveine, indigo, and so on. Apart from their conventional role as coloring agents, organic dyes, and pigments have been identified as indispensable sources for high-end technological applications including optical and electronic devices. Simultaneous with the advancement in the supramolecular chemistry of π-conjugated systems and the divergent evolution of organic semiconductor materials, several dyes, and pigments have emerged as potential candidates for contemporary optoelectronic devices. Of all the major pigments, diketopyrrolopyrrole (DPP) better known as the ‘Ferrari Pigment’ and its derivatives have emerged as a major class of organic functional dyes that find varied applications in fields such as industrial pigments, organic solar cells, organic field–effect transistors, and in bioimaging. Since its discovery in 1974 by Farnum and Mehta, DPP-derived dyes gained rapid attention because of its attractive color, synthetic feasibility, ease of functionalization, and tunable optical and electronic properties. The advancement in supramolecular polymerization of DPP-based small molecules and oligomers with directed morphological and electronic features have led to the development of high performing optoelectronic devices. In this review, we highlight the recent developments in the optoelectronic applications of DPP derivatives specifically engineered to form supramolecular polymers.  相似文献   

2.
This paper describes reviews about the characterization of optical and electronic (opto-electronic) organic materials including polymers, and their applications for advanced key devices used for computers and communications technologies. On the basis of the author's recent investigations, discussions are made on organic electroluminescent thin film materials for emissive display devices, polymer-dispersed liquid crystal materials for passive display devices, organic photo-conductive materials for electrophotographic printer devices, and highly electroconductive polymers for solid tantalum capacitors. Finally, technical issues and development prospects for the opto-electronic organic materials in the 21st century are suggested.  相似文献   

3.
Abstract

Stereoregular fused thiophenes (SFTs: especially thieno[3,2-b]thiophene (TT) and dithieo[3,2-b:2′,3′-d]thiophene (DTT)), as stable conjugated structures deriving from thiophene ring enlargement, possess outstanding properties and special configuration, such as the superior carrier transfer efficiency and a high degree backbone of planarity. In comparison to stand-alone SFTs structures, oligomers and polymers containing different heteroaromatic units have been much widely researched and used in many fields. In decade, several important reviews have summarized the broad field of fused thiophenes including SFTs, and their synthesis and optoelectronic applications. Here, we critically present the structure–performance relationships and application of oligomers and polymers containing SFTs (exhibiting thiophene ring number from 2 to 7) units. First, the basic structures and properties of SFTs are briefly stated. Then, oligomers classified by extra conjugated heterocyclic attachments are carefully discussed, focusing on the structure–performance relationships for their optoelectronic applications including organic photovoltaic cells and organic field-effect transistors. Moreover, such relationships in polymers have been applied in much wider fields such as organic light-emitting diodes, electrochromic devices, thermoelectric devices, and supercapacitors are discussed. Finally, a summary and prospect are given. Through this review, instruction for molecular design and novel ideas for the future development of SFTs-contained are provided.  相似文献   

4.
P-type polymers are polymeric semiconducting materials that conduct holes and have extensive applications in optoelectronics such as organic photovoltaics. Taking the advantage of intrinsic discontinuous light absorption of organic semiconductors, semitransparent organic photovoltaics (STOPVs) present compelling opportunities in various potential applications such as building-integrated photovoltaics, agrivoltaics, automobiles, and wearable electronics. The characteristics of p-type polymers, including optical, electronic, and morphological properties, determine the performance of STOPVs, and the requirements for p-type polymers differ between opaque organic photovoltaics and STOPVs. Hence, in this Minireview, recent advances of p-type polymers used in STOPVs are systematically summarized, with emphasis on the effects of chemical structures, conformation structures, and aggregation structures of p-type polymers on the performance of STOPVs. Furthermore, new design concepts and guidelines are also proposed for p-type polymers to facilitate the future development of high-performance STOPVs.  相似文献   

5.
Organic conjugated polymers and oligomers are key electronic materials for applications such as transistors, photovoltaics, and light emitting devices due to their potential for solution processability, mechanical flexibility, and precise structure-based tuning compared to inorganic materials. In dilute environments, the optoelectronic properties of conjugated polymers are largely governed by their constitutional structure and, to a lesser degree, their solution-state intramolecular configuration. In the solid state, intramolecular conformation and intermolecular electronic coupling impact these properties substantially, especially in relation to device performance. Therefore, an increasingly important area of research concerning conjugated materials is developing design strategies aimed at optimizing the solid-state packing for electronic applications. Programming solid-state packing arrangements through discrete non-covalent interactions is an emerging strategy within the context of conjugated polymers. This review focuses on the use of the two most prevalent discrete and directional interactions used to dictate the self-assembly of conjugated polymers and oligomers—hydrogen bonds and chalcogen bonds. We also discuss how these design motifs can imbue conjugated materials with appealing physical properties while simultaneously retaining or improving electronic capabilities.  相似文献   

6.
The development of conjugated polymers with high semiconducting performance and high reliability is of great significance for flexible electronics. Herein, we developed a new type of electron-accepting building block; i.e., non-symmetric half-fused B←N coordinated diketopyrrolopyrrole (DPP) ( HBNDPP ), for amorphous conjugated polymers toward flexible electronics. The rigid B←N fusion part of HBNDPP endows the resulting polymers with decent electron transport, while its non-symmetric structure causes the polymer to exhibit multiple conformation isomers with flat torsional potential energies. Thus, it gets packed in an amorphous manner in solid state, ensuring good resistance to bending strain. Combined with hardness and softness, the flexible organic field-effect transistor devices exhibit n-type charge properties with decent mobility, good bending resistance, and good ambient stability. The preliminary study makes this building block a potential candidate for future design of conjugated materials for flexible electronic devices.  相似文献   

7.
Intrinsically conducting polymers constituting a subclass of macromolecules, as well as a still growing family of large, conjugated molecules, oligomers, and polymers, have attracted research interest for the recent decades. Closely corresponding to the fascination of these materials, combining typical properties of organic polymers and metallic materials, numerous applications have been suggested, explored, and sometimes transferred into products. In electrochemistry, they have been used in various functions beyond the initially proposed and obvious application as active masses in devices for electrochemical energy conversion and storage. This perspective contribution wraps up basic facts that are necessary to understand the behavior and properties of the oligo and polymers and their behavior in electrochemical cells for energy conversion by electrode reactions and associated energy storage. Representative examples are presented and discussed, and an overview of the state of research and development is provided. Particular attention is paid to stability and related aspects of practical importance. Future trends and perspectives are indicated.  相似文献   

8.
Owing to their versatile (opto)electronic properties, conjugated polymers have found application in several organic electronic devices. Cross-coupling reactions such as Stille, Suzuki, Kumada couplings, and direct arylation reactions have proved to be effective for their synthesis. More atom-efficient oxidative direct arylation polymerization has also been reported for making homopolymers. However, growing interest toward donor-acceptor polymers has led to the recent emergence of cross-dehydrogenative coupling (CDC) polymerization to synthesize alternating copolymers without any prefunctionalization of monomers. Metal-catalyzed cross-coupling of two simple arenes via double C−H activation, or of an arene with an alkene via oxidative Heck-type reaction have been used so far for CDC polymerization. In this article, we discuss the development of CDC polymerization protocols along with the relevant small molecule CDC reactions for an improved understanding of these reactions.  相似文献   

9.
This paper describes reviews about characterizations of optical and electronic (opto-electronic) organic materials including macromolecule complex, and their applications for advanced key devices used for computers and communications technologies. On the basis of the author's recent investigations, discussions are made on organic electroluminescent thin film materials for emissive display devices, polymer dispersed liquid-crystal materials for passive display devices, organic photoconductive materials for electrophotographic printer devices, and highly electroconductive polymers for solid tantalum capacitors. Finally, the technical issues and development prospects for the opto-electronic organic materials in the 21st century are suggested.  相似文献   

10.
Organic conjugated polymers and oligomers constitute a three-dimensional network of molecular wires, in which all monomeric units can be functionalized with various prosthetic groups. By varying the nature of these groups, specific interactions with external physical or chemical phenomena can be developed in these materials, leading to molecular devices such as sensors, transducers, memories and logic operators. Chemists have already mastered the realization of many of these functional elements, which mimic those existing in organized beings.The further assembly of these elements in multifunctionalized organic conducting polymers and oligomers will represent the next step towards intelligent materials.  相似文献   

11.
Functional organic molecular materials and conjugated oligomers or polymers now allow the low-cost fabrication of thin films for insertion into new generations of electronic and optoelectronic devices. The performance of these devices relies on the understanding and optimization of several complementary processes. Our goal is to discuss the relationship between the molecular stacking structures and their optoelectronic properties that are of importance in all these areas. The concept of intermolecular interaction should be taken here in the special sense that is inter-dipole coupling. Specifically, we will address the impact of inter-dipole interaction between adjacent molecules in aggregate state on the solid-state emission properties.  相似文献   

12.
Functional organic molecular materials and conjugated oligomers or polymers now allow the low-cost fabrication of thin films for insertion into new generations of electronic and optoelectronic devices. The performance of these devices relies on the understanding and optimization of several complementary processes. Our goal is to discuss the relationship between the molecular stacking structures and their optoelectronic properties that are of importance in all these areas. The concept of intermolecular interaction should be taken here in the special sense that is inter-dipole coupling. Specifically, we will address the impact of inter-dipole interaction between adjacent molecules in aggregate state on the solid-state emission properties.  相似文献   

13.
Benzotrithiophene (BTT) isomers were investigated using density functional theory (DFT) and time‐dependent DFT (TD‐DFT) with the aim to explore their structures, linear optical properties, vertical and adiabatic ionization potentials (IPv and IPa), electron affinities (EAv and EAa), and reorganization energies (λ). The computed bond lengths and bond angles at the B3LYP/6–311+G (d, p) level of theory are in good agreement with experimental crystal structures of the known BTTs. These molecules are planar with zero dihedral angle, making them an ideal backbone for high charge mobility. The UV–visible spectra of BTT isomers are in the range 280–360 nm. All BTT isomers have low hole/electron reorganization energies, which is the main characteristic of good hole/electron transporting materials, and these isomers in turn have potential applications in the field of organic materials.  相似文献   

14.
通过双Suzuki偶联反应一步合成了2种含硫甲基的芴-苯结构化合物2,7-二(4-硫甲基苯基)-9,9-二己基-芴(a)和2,7-二(2,6-二甲基-4-硫甲基苯基)-9,9-二己基-芴(b).紫外-可见和荧光光谱以及分子轨道理论计算表明,位阻较小的化合物a具有更好的共轭性能,其最大紫外-可见吸收波长达到351nm,比两端苯基含4个邻位取代基的化合物b红移了38nm;化合物a的最大荧光发射波长达到410nm,为典型的蓝光化合物,比化合物b红移了43nm.化合物a和b都具有较高的荧光量子产率,分别为59%和65%,在光电材料方面具有潜在的应用前景.  相似文献   

15.
聚合物热激活延迟荧光(TADF)材料应用于有机发光二极管(OLEDs)中以来,取得了飞速发展,迄今为止已经报道了多种不同分子结构及性能优异的聚合物TADF发光材料.它们具有不含重金属的化学结构、100%的理论内量子效率和易于通过溶液加工进行大面积制造的优势.本文从分子结构和发光颜色2个角度总结了不同结构TADF聚合物的研究进展,重点介绍了我们课题组在长链型TADF聚合物设计与OLEDs器件性能方面的研究工作,探究TADF聚合物颜色调控与效率提升的途径,论述了TADF聚合物存在的问题与未来发展.  相似文献   

16.
在过去的几十年里,有机电子学作为一个新兴领域迅猛发展,为科学技术的进步作出了巨大的贡献.有机材料被应用在各种电子器件中,并取得了卓越的成效.作为使用在电子器件中最基本的组分,有机光电材料更是备受瞩目.二嗪类化合物具有优异的光电性能,是光电材料领域最活跃的研究方向之一.两个N原子相对位置的不同,可以构成三种异构体,分别为哒嗪(1,2-二嗪)、嘧啶(1,3-二嗪)和吡嗪(1,4-二嗪),从而有效地调控材料的电子结构,且可以影响二嗪化合物不同位置的修饰,从而得到了广泛关注.本文对近年来二嗪类化合物在光伏材料、薄膜半导体材料、液晶材料、传感材料和电致发光材料等领域的研究进展进行了较全面的总结和评述,指出目前基于二嗪类化合物的光电材料所面临的困难以及未来的发展方向,最后展望了二嗪类化合物作为杂环类有机光电功能材料的应用前景.  相似文献   

17.
Direct (hetero)arylation, as a sustainable, atom-economic and environmentally benign synthetic protocol compared to conventional coupling techniques, has been extensively applied to the sustainable preparation of π-conjugated materials for organic optoelectronic devices. In this review, we will highlight recent advances made in direct arylation for conjugated small molecules and polymers toward high performance organic optoelectronic devices. Some important insights in direct arylation for synthesizing organic optoelectronic materials are given, together with the challenges and outlook in this significant and hot research field.  相似文献   

18.
Covalent organic frameworks (COFs), as a burgeoning class of crystalline porous materials, have made significant progress in their application to optoelectronic devices such as field-effect transistors, memristors, and photodetectors. However, the insoluble features of microcrystalline two-dimensional (2D) COF powders limit development of their thin film devices. Additionally, the exploration of spin transport properties in this category of π-conjugated skeleton materials remains vacant thus far. Herein, an imine-linked 2D Py-Np COF nanocrystalline powder was synthesized by Schiff base condensation of 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl)tetraaniline and naphthalene-2,6-dicarbaldehyde. Then, we prepared a large-scale free-standing Py-Np COF film via a top-down strategy of chemically assisted acid exfoliation. Moreover, high-quality COF films acted as active layers were transferred onto ferromagnetic La0.67Sr0.33MnO3 (LSMO) electrodes for the first attempt to fabricate organic spin valves (OSVs) based on 2D COF materials. This COF-based OSV device with a configuration of LSMO/Py-Np COF/Co/Au demonstrated a remarkable magnetoresistance (MR) value up to −26.5 % at 30 K. Meanwhile, the MR behavior of the COF-based OSVs exhibited a highly temperature dependence and operational stability. This work highlights the enormous application prospects of 2D COFs in organic spintronics and provides a promising approach for developing electronic and spintronic devices based on acid-exfoliated COF thin films.  相似文献   

19.
Organic field-effect transistors are of great importance to electronic devices. With the emergence of various preparation techniques for organic semiconductor materials, the device performance has been improved remarkably. Among all of the organic materials, single crystals are potentially promising for high performances due to high purity and well-ordered molecular arrangement. Based on organic single crystals, alignment and patterning techniques are essential for practical industrial application of electronic devices. In this review, recently developed methods for crystal alignment and patterning are described.  相似文献   

20.
与无机热电材料相比, 有机热电材料具有资源丰富、 成本低、 质量轻、 柔韧性好及热导率低等优点, 成为热电研究领域关注的热点. 理论和实验结果表明, 低维化和小尺度化是热电材料研究和开发的发展方向. 本文对低维有机热电材料的合成、 器件组装及热电性质的影响因素等进行简要评述, 并对低维有机热电材料的研究方向进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号