首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
With the goal of imposing shape and structure on supramolecular gels, we combine a low-molecular-weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core–shell-structured gel beads—a rare example of a supramolecular gel formulated inside discrete gel spheres. The self-assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP-loaded gel bead can catalyse the Suzuki–Miyaura reaction, constituting a simple and easy-to-use reaction-dosing form. These uniquely shaped and structured LMWG-filled gel beads are a versatile platform technology with great potential in a range of applications.  相似文献   

2.
Hybrid gel beads based on combining a low-molecular-weight gelator (LMWG) with a polymer gelator (PG) demonstrate an enhanced ability to self-propel in water, with the LMWG playing an active role. Hybrid gel beads were loaded with ethanol and shown to move in water owing to the Marangoni effect changes in surface tension caused by the expulsion of ethanol – smaller beads move farther and faster than larger beads. Flat shapes of the hybrid gel were cut using a “stamp” – circles moved the furthest, whereas stars showed more rotation on their own axes. Comparing hybrid LMWG/PG gel beads with PG-only beads demonstrated that the LMWG speeds up the beads, enhancing the rate of self-propulsion. Self-assembly of the LMWG into a “solid-like” network prevents its leaching from the gel. The LMWG also retains its own unique function – specifically, remediating methylene blue pollutant dye from basic water as a result of noncovalent interactions. The mobile hybrid beads accumulate this dye more effectively than PG-only beads. Self-propelling gel beads have potential applications in removal/delivery of active agents in environmental or biological settings. The ability of self-assembling LMWGs to enhance mobility and control removal/delivery suggests that adding them to self-propelling systems can add significant value.  相似文献   

3.
This Full Paper reports the formation of silver (Ag) NPs within spatially resolved two-component hydrogel beads, which combine a low-molecular-weight gelator (LMWG) DBS-CONHNH2 and a polymer gelator (PG) calcium alginate. The AgNPs are formed through in situ reduction of AgI, with the resulting nanoparticle-loaded gels being characterised in detail. The antibacterial activity of the nanocomposite gel beads was tested against two drug-resistant bacterial strains, often associated with hospital-acquired infections: vancomycin-resistant Enterococcus faecium (VRE) and Pseudomonas aeruginosa (PA14), and the AgNP-loaded gels showed good antimicrobial properties against both types of bacteria. It is suggested that the gel bead format of these AgNP-loaded hybrid hydrogels makes them promising versatile materials for potential applications in orthopaedics or wound healing.  相似文献   

4.
We report the preparation of hybrid self-assembled microgel beads by combining the low molecular weight gelator (LMWG) DBS-CONHNH2 and the natural polysaccharide calcium alginate polymer gelator (PG). Microgel formulations based on LMWGs are extremely rare due to the fragility of the self-assembled networks and the difficulty of retaining any imposed shape. Our hybrid beads contain interpenetrated LMWG and PG networks, and are obtained by an emulsion method, allowing the preparation of spherical gel particles of controllable sizes with diameters in the mm or μm range. Microgels based on LMWG/alginate can be easily prepared with reproducible diameters <1 μm (ca. 800 nm). They are stable in water at room temperature for many months, and survive injection through a syringe. The rapid assembly of the LMWG on cooling plays an active role in helping control the diameter of the microgel beads. These LMWG microbeads retained the ability of the parent gel to deliver the bioactive molecule heparin, and in cell culture medium this enhanced the growth of human mesenchymal stem cells. Such microgels may therefore have future applications in tissue repair. This approach to fabricating LMWG microgels is a platform technology, which could potentially be applied to a variety of different functional LMWGs, and hence has wide-ranging potential.

We report microgel beads with diameters of ca. 800 nm based on interpenetrating networks of a low-molecular-weight gelator and a polymer gelator, and demonstrate their use as heparin delivery vehicles to enhance stem cell growth.  相似文献   

5.
Through mimicking both the chiral and energy transfer in an artificial self‐assembled system, not only was chiral transfer realized but also a dual upconverted and downconverted energy transfer system was created that emit circularly polarized luminescence. The individual chiral π‐gelator can self‐assemble into a nanofiber exhibiting supramolecular chirality and circularly polarized luminescence (CPL). In the presence of an achiral sensitizer PdII octaethylporphyrin derivative, both chirality transfer from chiral gelator to achiral sensitizer and triplet‐triplet energy transfer from excited sensitizer to chiral gelator could be realized. Upconverted CPL could be observed through a triplet–triplet annihilation photon upconversion (TTA‐UC), while downconverted CPL could be obtained from chirality‐transfer‐induced emission of the achiral sensitizer. The interplay between chiral energy acceptor and achiral sensitizer promoted the communication of chiral and excited energy information.  相似文献   

6.
Creating cavities in varying levels, from molecular containers to macroscopic materials of porosity, have long been motivated for biomimetic or practical applications. Herein, we report an assembly approach to multiresponsive supramolecular gels by integrating photochromic metal–organic cages as predefined building units into the supramolecular gel skeleton, providing a new approach to create cavities in gels. Formation of discrete O‐Pd2L4 cages is driven by coordination between Pd2+ and a photochromic dithienylethene bispyridine ligand (O‐PyFDTE). In the presence of suitable solvents (DMSO or MeCN/DMSO), the O‐Pd2L4 cage molecules aggregate to form nanoparticles, which are further interconnected through supramolecular interactions to form a three‐dimensional (3D) gel matrix to trap a large amount of solvent molecules. Light‐induced phase and structural transformations readily occur owing to the reversible photochromic open‐ring/closed‐ring isomeric conversion of the cage units upon UV/visible light radiation. Furthermore, such Pd2L4 cage‐based gels show multiple reversible gel–solution transitions when thermal‐, photo‐, or mechanical stimuli are applied. Such supramolecular gels consisting of porous molecules may be developed as a new type of porous materials with different features from porous solids.  相似文献   

7.
Supramolecular gels find applications in various fields. Usually, a specific gelator is useful only for a specific application. This one‐gelator‐one‐application format is one factor that limits the usefulness of supramolecular gels. We report the synthesis of a library of gelators from a common core by using a click‐chemistry approach. Thus, the click reaction of β‐azido‐4,6‐O‐benzylidene–galactopyranoside ( 1 ) with various alkynes gave 11 different gelators having varying gelation abilities. Whereas gelators having alkyl‐chain substituents congealed alkanes and tetraethylorthosilicate (TEOS), the gelators having aromatic substituents congealed aromatic solvents. We exploited this difference in gelling behavior in the templated synthesis of silica rods and porous plastics. The styrene gel of gelator 2 j was polymerized, and the gelator was removed by washing to obtain porous polystyrene. The TEOS gel of gelator 2 b was polymerized to silica, and the gelator template was removed by calcination to give microstructured silica rods. We also developed fluorescent gelator 2 f by this method, which might find applications by virtue of its fluorescence in the assembled state.  相似文献   

8.
Eutectogels are an emerging family of soft ionic materials alternative to ionic liquid gels and organogels, offering fresh perspectives for designing functional dynamic platforms in water-free environments. Herein, the first example of mixed ionic and electronic conducting supramolecular eutectogel composites is reported. A fluorescent glutamic acid-derived low-molecular-weight gelator (LMWG) was found to self-assemble into nanofibrillar networks in deep eutectic solvents (DES)/poly(3,4-ethylenedioxythiophene) (PEDOT): chondroitin sulfate dispersions. These dynamic materials displayed excellent injectability and self-healing properties, high ionic conductivity (up to 10−2 S cm−1), good biocompatibility, and fluorescence imaging ability. This set of features turns the mixed conducting supramolecular eutectogels into promising adaptive materials for bioimaging and electrostimulation applications.  相似文献   

9.
Two structurally similar trans‐bis(pyridine) dichloropalladium(II)‐ and platinum(II)‐type complexes were synthesized and characterized. They both self‐assemble in n‐hexane to form viscous fluids at lower concentrations, but form metallogels at sufficient concentrations. The viscous solutions were studied by capillary viscosity measurements and UV/Vis absorption spectra monitored during the disassembly process indicated that a metallophilic interaction was involved in the supramolecular polymerization process. For the two supramolecular assemblies, uncommon continuous porous networks were observed by using SEM and TEM revealed that they were built from nanofibers that fused and crosslinked with the increase of concentration. The xerogels of the palladium and platinum complexes were carefully studied by using synchrotron radiation WAXD and EXAFS. The WAXD data show close stacking distances driven by π–π and metal–metal interactions and an evident dimer structure for the platinum complex was found. The coordination bond lengths were extracted from fitting of the EXAFS data. Moreover, close PtII–PtII (PdII–PdII) and Pt?Cl (Pd?Cl) interactions proposed from DFT calculations in the reported oligo(phenylene ethynylene) (OPE)‐based palladium(II) pyridyl supramolecular polymers were also confirmed by using EXAFS. The PtII–PtII interaction is more feasible for supramolecular interaction than the PdII–PdII interaction in our simple case.  相似文献   

10.
C3-Symmetry tris-urea low molecular weight gelator (LMWG) (1), which shows chemical stimuli responsible for a sol-gel phase transition, was divided into five regions. Based on the division, 22 derivatives were synthesized. The gelation ability of these derivatives was tested in nine organic solvents with a wide range of values for relative static permittivity (?r=47.2-1.89). Some derivatives showed a better performance as LMWGs than the original tris-urea LMWG (1). For example, the critical gelation concentration (CGC) in acetone was improved from 1.5 wt % to 0.5 wt % by changing the core substituent (18). Highly versatile LMWG for a variety of solvents was obtained by changing the linker moiety (23). Structural information to design tris-urea LMWGs is important to create rationally a functional supramolecular gel.  相似文献   

11.
A low-molecular-weight gel with dual pH and glucose sensitivity was designed as the gate controller for mesoporous silica nanoparticles (MSNs) to fabricate a smart drug delivery system. The smart gel caped MSNs could control the antidiabetic drug release via the detection of glucose and pH levels.  相似文献   

12.
The ternary system of dodecylpyridinium bromide (DDPB)/acetone/H2O with appropriate composition can form a gel spontaneously and the gel is stable in hydrophobic ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([Bmim]PF6). Based on the gelation phenomenon we observed, the low molecular weight gelator (LMWG) was first tried to immobilize horseradish peroxidase (HRP) on glassy carbon electrode (GCE). The scanning electron microscope (SEM) images, the UV‐Vis spectra and the bioactivity measurement indicate that the gel is suitable for the immobilization of HRP. The direct electrochemistry of the HRP‐gel modified GCE (HRP‐gel/GCE) in [Bmim]PF6 shows a pair of well‐defined and quasi‐reversible redox peaks with the heterogeneous electron transfer rate constant (ks) being 14.4 s?1, indicating that the direct electron transfer between HRP and GCE is fast. The HRP‐gel/GCE is stable and reproducible. Also the electrode exhibits good electrocatalytic effect on the reduction of trichloroacetic acid (TCA), showing good promise in bioelectrocatalysis.  相似文献   

13.
The low solubility of carbon nanostructures (CNs) in water and the need of ordered architectures at the nanoscale level are two major challenges for materials chemistry. Here we report that a novel amino acid based low‐molecular‐weight gelator (LMWG) can be used to effectively disperse pristine CNs in water and to drive their ordered self‐assembly into supramolecular hydrogels. A non‐covalent mechanochemical approach has been used, so the π‐extended system of the CNs remains intact. Optical spectroscopy and electron microscopy confirmed the effective dispersion of the CNs in water. Electron microscopy of the hydrogels showed the formation of an ordered, LMWG‐assisted, self‐assembled architecture. Moreover, the very same strategy allows the solubilization and self‐assembly in water of a variety of hydrophobic molecules.  相似文献   

14.
This article describes the fabrication of new pH-responsive hybrid gel beads combining the polymer gelator calcium alginate with two different low-molecular-weight gelators (LMWGs) based on 1,3 : 2,4-dibenzylidene-d -sorbitol: pH-responsive DBS-COOH and thermally responsive DBS-CONHNH2, thus clearly demonstrating that different classes of LMWG can be fabricated into gel beads by using this approach. We also demonstrate that self-assembled multicomponent gel beads can be formed by using different combinations of these gelators. The different gel bead formulations exhibit different responsiveness – the DBS-COOH network can disassemble within those beads in which it is present upon raising the pH. To exemplify preliminary data for a potential application for these hybrid gel beads, we explored aspects of the delivery of the lipid-lowering active pharmaceutical ingredient (API) rosuvastatin. The release profile of this statin from the hybrid gel beads is pH-dependent, with greater release at pH 7.4 than at pH 4.0 – primary control of this process results from the pKa of the API. The extent of pH-mediated API release is also significantly further modified according to gel bead composition. The DBS-COOH/alginate beads show rapid, highly effective drug release at pH 7.4, whereas the three-component DBS-COOH/DBS-CONHNH2/alginate system shows controlled slow release of the API under the same conditions. These initial results indicate that such gel beads constitute a promising, versatile and easily tuned platform suitable for further development for controlled drug-delivery applications.  相似文献   

15.
This paper reports an overview of low-molecular-weight gelators (LMWGs) that have a ureide moiety as a hydrogen-bonding site. Various mono-, bis-, tris-, and tetrakis-urea compounds can form supramolecular gels with organic solvents. The author developed a C 3-symmetrical tris-urea molecule that can form a ubiquitous framework of LMWGs. The supramolecular organogel of the tris-urea molecule exhibited a chemical-stimuli-responsive reversible gel–sol phase transition. Supramolecular hydrogels are constructed from self-assemblies of amphiphilic urea derivatives. Sugar-connected amphiphilic tris-urea was found to form a gel with water, and the hydrogels showed chemical-stimuli-responsive gel–sol phase transitions. The potential of supramolecular hydrogels as matrices of electrophoresis has been demonstrated through the supramolecular gel electrophoresis (SUGE) of protein samples using our developed amphiphilic tris-urea LMWG.  相似文献   

16.
Macroscopically oriented stable organic radicals have been obtained by using a liquid–crystalline (LC) gel composed of an l ‐isoleucine‐based low molecular weight gelator containing a 2,2,6,6‐tetramethylpiperidine 1‐oxyl moiety. The LC gel has allowed magnetic measurements of the oriented organic radical. The gelator has formed fibrous aggregates in liquid crystals via intermolecular hydrogen bonds. The fibrous aggregates of the radical gelator are formed and oriented on cooling by applying a magnetic field to the mixture of liquid crystals and the gelator. Superconducting quantum interference device (SQUID) measurements have revealed that both oriented and nonoriented fibrous aggregates exhibited antiferromagnetic interactions, in which super‐exchange interaction constant J is estimated as ?0.89 cm?1.  相似文献   

17.
Pincer PdII–isocyanide complexes are described that display intermolecular interactions and emissive 3MMLCT excited states in aggregation state(s) at room temperature. The intermolecular PdII?PdII and ligand–ligand interactions drive these complexes to undergo supramolecular polymerization in a living manner. Comprehensive spectroscopic studies reveal a pathway with a kinetic trap that can be modulated by changing the counteranion and metal atom. The PdII supramolecular assemblies comprise two different aggregation forms with only one to be emissive. DFT/TDDFT calculations lend support to the MMLCT absorption and emission of these pincer PdII–isocyanide aggregates.  相似文献   

18.
By coupling the features of anthracene and urea, a new low-molecular-weight gelator (LMWG, 1) with anthracene and urea moieties was designed and synthesized. A nontransparent gel of LMWG 1 in 1,2-dichloroethane was formed and characterized. Of particular interest is the observation of significant fluorescence enhancement after gelation, which is referred as to gelation-induced enhanced fluorescence emission. UV light irradiation of the THF solution of LMWG 1 yielded a photodimer with the h-t conformation. The photodimer can gel several organic solvents, including cyclohexane, n-hexane, and n-heptane. It should be mentioned that the gel based on the photodimer is rather stable. Our studies indicate that neither the gel phase based on LMWG 1 nor that based on the photodimer can be transformed to the solution by respective UV light irradiation or visible light irradiation/heating.  相似文献   

19.
Low‐molecular‐weight organic hydrogelators (LMHGs) that can rigidify water into soft materials are desirable in various applications. Herein, we report the excellent hydrogelating properties of a simple synthetic auxin–amino‐acid conjugate, naphthalene‐1‐acetamide of L ‐phenylalanine ( 1‐NapF , Mw=333.38 Da), which gelated water even at 0.025 wt %, thereby making it the most‐efficient LMHG known. Optically transparent gels that exhibited negligible scattering in the range 350–900 nm were obtained. A large shift from the theoretical pKa value of the gelator was observed. The dependence of the minimum gelator concentration (MGC) and the gel‐melting temperatures on the pH value indicated the importance of H‐bonding between the carboxylate groups on adjacent phenylalanine molecules in the gelator assembly. FTIR spectroscopy of the xerogels showed a β‐sheet‐like assembly of the gelator. Variable‐temperature 1H NMR spectroscopy demonstrated that π stacking of the aromatic residues was also partly involved in the gelator assembly. TEM of the xerogel showed the presence of a dense network of thin, high‐aspect‐ratio fibrillar assemblies with diameters of about 5 nm and lengths that exceeded a few microns. Rheology studies showed the formation of stable gels. The entrapment of water‐soluble dyes afforded extremely fluorescent gels that involved the formation of J‐aggregates by the dye within gel. A strong induced‐CD band established that the RhoB molecules were interacting closely with the chiral gelator aggregates. H‐bonding and electrostatic interactions, rather than intercalation, seemed to be involved in RhoB binding. The addition of chaotropic reagents, as well as increasing the pH value, disassembled the gel and promoted the release of the entrapped dye with zero‐order kinetics.  相似文献   

20.
Following a supramolecular synthon approach, simple salt formation has been employed to gain access to a series of supramolecular gelators derived from the well‐known non‐steroidal anti‐inflammatory drug (NSAID) ibuprofen. A well‐studied gel‐inducing supramolecular synthon, namely primary ammonium monocarboxylate (PAM), has been exploited to generate a series of PAM salts by reacting ibuprofen with various primary amines. Remarkably, all of the salts ( S1 – S7 ) thus synthesized proved to be good to moderate gelators of various polar and nonpolar solvents. Single‐crystal and powder X‐ray diffraction studies established the existence of the PAM synthons in the gel network, confirming the efficacy of the supramolecular synthon approach employed. Most importantly, the majority of the salts ( S2 , S3 , S6 , and S7 ) were capable of gelling methyl salicylate (MS), an important ingredient found in many commercial topical gels. In vitro experiments (MTT and PGE2 assays) revealed that all of the salts (except S3 and S7 ) were biocompatible (up to 0.5 mm concentration), and the most suited one, S6 , displayed anti‐inflammatory ability as good as that of the parent drug ibuprofen. A topical gel of S6 with methyl salicylate and menthol was found to be suitable for delivering the gelator drug in a self‐delivery fashion in treating skin inflammation in mice. Histological studies, including immunohistology, were performed to further probe the role of the gelator drug S6 in treating inflammation. Cell imaging studies supported cellular uptake of the gelator drug in such biomedical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号