首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
SrF2:Eu3+ nanospheres with homogeneous diameter have been synthesized by a microemulsion-mediated hydrothermal method for the first time, in which quaternary microemulsion of CTAB/water/cyclohexane/n-pentanol was used. The possible reaction mechanism and the luminescent properties of SrF2:Eu3+ nanospheres were also investigated in this paper. The morphology and grain sizes of final products were characterized by field emission scanning electron microscopy and transmission electron microscopy, indicating that most of the products were nanospheres with an average diameter of ∼50 nm. Room-temperature emission spectra, recorded under 394-nm excitation, showed that the transition of 5D0 → 7F1 emission be dominating in SrF2:Eu3+ nanospheres. From the dependence of the luminescence intensity on the concentration of Eu3+ ions, the optimal dopant concentration is 2 mol%.  相似文献   

2.
采用优化的高温固相方法制备了稀土离子Eu3+和Tb3+掺杂的La7O6(BO3)(PO42系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La7O6(BO3)(PO42:Eu3+材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D07F2特征能级跃迁,Eu3+的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La7O6(BO3)(PO42:Tb3+材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb3+5D47F5能级跃迁,Tb3+离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu3+和Tb3+掺杂的La7O6(BO3)(PO42荧光材料均具有良好的热稳定性。  相似文献   

3.
Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by 5D0-7F2 transition of Eu3+ (618 nm, red). The PL and CL intensities of Eu3+ increase with increasing the annealing temperature and the number of coating cycles. The optimum concentration for Eu3+ was determined to be 5 mol% of Gd3+ in GdVO4 host.  相似文献   

4.
SrZnO2:Eu3+ has been synthesized by solid-state reaction and its photoluminescence in ultraviolet (UV)-vacuum ultraviolet (VUV) range was investigated. The broad bands around 254 nm are assigned to CT band of Eu3+-O2−. With the increasing of Eu3+ concentration, Eu3+ could occupy different sites, which leads to the broadening of CT band. A sharp band is observed in the region of 110-130 nm, which is related to the host absorption. The phosphors emit red luminescence centered at about 616 nm due to Eu3+5D07F2 both under 254 and 147 nm, but none of Eu2+ blue emission can be observed.  相似文献   

5.
BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)2, Eu(NO3)3 and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ 5D0-7FJ (J=1-4) transitions, with the magnetic dipole 5D0-7F1 allowed transition (590 nm) being the most prominent emission line.  相似文献   

6.
A novel red emitting phosphor, Eu3+-doped Ca2SnO4, was prepared by the solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the formation of Ca2SnO4: Eu3+. Field-emission scanning electron-microscopy (FE-SEM) observation indicated a narrow size-distribution of about 500 nm for the particles with spherical shape. Photoluminescence measurements indicated that the phosphor exhibits bright red emission at about 615 nm under UV excitation. The excellent luminescence properties make it possible as a good candidate for plasma display panels (PDP) application. Splitting of the 5D0-7FJ transitions of Ca2SnO4: Eu3+ suggests that the Eu3+ ions occupied two nonequivalent sites in the crystallite. The luminescence lifetime measurement showed a bi-exponential decay, providing other evidence for the existence of two different environments for Eu3+ ions.  相似文献   

7.
We present an efficient way to search a host for ultraviolet (UV) phosphor from UV nonlinear optical (NLO) materials. With the guidance, Na3La2(BO3)3 (NLBO), as a promising NLO material with a broad transparency range and high damage threshold, was adopted as a host material for the first time. The lanthanide ions (Tb3+ and Eu3+)-doped NLBO phosphors have been synthesized by solid-state reaction. Luminescent properties of the Ln-doped (Ln=Tb3+, Eu3+) sodium lanthanum borate were investigated under UV ray excitation. The emission spectrum was employed to probe the local environments of Eu3+ ions in NLBO crystal. For red phosphor, NLBO:Eu, the measured dominating emission peak was at 613 nm, which is attributed to 5D0-7F2 transition of Eu3+. The luminescence indicates that the local symmetry of Eu3+ in NLBO crystal lattice has no inversion center. Optimum Eu3+ concentration of NLBO:Eu3+ under UV excitation with 395 nm wavelength is about 30 mol%. The green phosphor, NLBO:Tb, showed bright green emission at 543 with 252 nm excited light. The measured concentration quenching curve demonstrated that the maximum concentration of Tb3+ in NLBO was about 20%. The luminescence mechanism of Ln-doped NLBO (Tb3+ and Eu3+) was analyzed. The relative high quenching concentration was also discussed.  相似文献   

8.
采用优化的高温固相方法制备了稀土离子Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La_7O_6(BO_3)(PO_4)_2∶Eu~(3+)材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D0→7F2特征能级跃迁,Eu~(3+)的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La_7O_6(BO_3)(PO_4)_2∶Tb~(3+)材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb~(3+)的5D4→7F5能级跃迁,Tb~(3+)离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2荧光材料均具有良好的热稳定性。  相似文献   

9.
通过高温固相反应合成了新型的蓝色荧光粉Sr7Zr(PO4)6xEu2+。通过X射线粉末衍射(XRD)、紫外可见(UV-Vis)吸收光谱、荧光光谱研究了Sr7Zr(PO4)6xEu2+材料的相纯度及荧光性质。结果表明,Eu2+掺杂获得的Sr7Zr(PO4)6xEu2+荧光粉为纯相,且200~400 nm范围内的近紫外(NUV)光均能对其进行有效的激发。在315 nm的激发下,Sr7Zr(PO4)6xEu2+荧光粉发射出峰值位于415 nm左右的蓝光,且Eu2+在Sr7Zr (PO4)6基质中的最佳掺杂浓度为0.05,相应的CIE色度坐标为(0.164,0.021),比商用BaMgAl10O17∶Eu2+(BAM)蓝色荧光粉具有更高的色纯度。  相似文献   

10.
Eu3+-doped triple phosphate Ca8MgR(PO4)7 (R=La, Gd, Y) was synthesized by the general high-temperature solid-state reaction. Excitation and emission spectra as well as luminescence decay were used to characterize the phosphors. Photoluminescence excitation and emission spectra showed that the phosphor could be efficiently excited by UV-vis light from 260 to 450 nm to give bright red emission assigned to the transition (5D07F2) at 612 nm. The richness of the red color has been verified by determining their color coordinates (XY) from the CIE standard.  相似文献   

11.
Vacuum ultraviolet (VUV) excitation and photoluminescent (PL) properties of Eu3+ and Tb3+ ion-doped aluminate phosphors, GdCaAl3O7:Eu3+ and GdCaAl3O7:Tb3+ have been investigated. X-ray diffraction (XRD) patterns indicate that the phosphor GdCaAl3O7 forms without impurity phase at 900 °C. Field emission scanning electron microscopy (FE-SEM) images show that the particle size of the phosphor is less than 3 μm. Upon excitation with VUV irradiation, the phosphors show a strong emission at around 619 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+, and at around 545 nm corresponding to the 5D47F5 transition of Tb3+. The results reveal that both GdCaAl3O7:RE3+ (RE=Eu, Tb) are potential candidates as red and green phosphors, respectively, for use in plasma display panel (PDP).  相似文献   

12.
Eu3+ luminescence is studied in apatite-related phosphate BiCa4(PO4)3O. Compositions of the formula Bi1−xEuxCa4(PO4)3O [x=0.05, 0.1, 0.3, 0.5, 0.8 and 1.0] are synthesized and they are isostructural with parent BiCa4(PO4)3O. Room temperature photoluminescence shows the various transitions 5D07FJ(=0,1,2) of Eu3+. The emission results of compositions with different Eu3+ content show the difference in site occupancy of Eu3+ in Bi1−xEuxCa4(PO4)3O. The intense 5D0-7F0 line at 574 nm for higher Eu3+ content is attributed to the presence of strongly covalent Eu-O bond that is possible by substituting Bi3+ in the Ca(2) site. This shows the preferential occupancy of Bi3+ in Ca(2) site and this has been attributed to the 6s2 lone pair electrons of Bi3+. This is further confirmed by comparing the emission results with La0.95Eu0.05Ca4(PO4)3O.  相似文献   

13.
A novel red light-emitting material, Ca3Al2O6:Eu3+, which is the first example found in the Ca3Al2O6 host, was prepared by calcination of a layered double hydroxide precursor at 1350 °C. The precursor, [Ca2.9−xAl2Eux(OH)9.8](NO3)2+x·2.5H2O, was prepared by coprecipitation of metal nitrates with sodium hydroxide. The material is a loose powder composed of irregular particles formed from aggregation of particles of a few nanometers, as shown in scanning electron microscope (SEM) images. It was found that the photoluminescence intensity reached the maximum when the calcination temperature was 1350 °C and the concentration of Eu3+ was 1.0%. The material emits bright red emission at 614 nm under a radiation of λ=250 nm.  相似文献   

14.
A new efficient blue phosphor, Eu2+ activated SrZnP2O7, has been synthesized at 1000 °C under reduced atmosphere and the crystal structure and photoluminescence properties have been investigated. The crystal structure of SrZnP2O7 was obtained via Rietveld refinement of powder X-ray diffraction (XRD) pattern. It was found that SrZnP2O7 crystallizes in space group of P21/n (no. 14), Z=4, and the unit cell dimensions are: a=5.30906(2) Å, b=8.21392(3) Å, c=12.73595(5) Å, β=90.1573(3)°, and V=555.390(3) Å3. Under ultraviolet excitation (200-400 nm), efficient Eu2+ emission peaked at 420 nm was observed, of which the luminescent efficiency at the optimal concentration of Eu2+ (4 mol%) was estimated to be 96% as that of BaMgAl10O17:Eu2+. Hence, the SrZnP2O7:Eu2+ exhibit great potential as a phosphor in different applications, such as ultraviolet light emitting diode and photo-therapy lamps.  相似文献   

15.
The new oxyborate phosphors, Na3La9O3(BO3)8:Eu3+ (NLBO:Eu) and Na3La9O3(BO3)8:Tb3+ (NLBO:Tb) were prepared by solid-state reactions. The photoluminescence characteristics under UV excitation were investigated. The dominated emission of Eu3+ corresponding to the electric dipole transition 5D07F2 is located at 613 nm and bright green luminescence of NLBO:Tb attributed to the transition 5D47F5 is centered at 544 nm. The concentration dependence of the emission intensity showed that the optimum doping concentration of Eu and Tb is 30% and 10%, respectively.  相似文献   

16.
Rare-Earth Actived Sol-Gel Films for Scintillator Applications   总被引:2,自引:0,他引:2  
Recently, there has been a growth of interest in new phosphors preparation for high resolution X-rays imaging systems. Sol-gel method has been used to synthesize europium doped gadolinium and lutetium oxide films. Structural and optical results are investigated and discussed on both Gd2O3:Eu3+ (5 mol%) and Lu2O3:Eu3+ (5 mol%). Those films are crystallized into cubic phase and present a density of 7.1 g/cm3 and 8.4 g/cm3 for Gd2O3:Eu3+ and Lu2O3:Eu3+ respectively. Room temperature emission spectra using an excitation of 468 nm was used to obtain the intense red emission 5D0 7F2 (611 nm) of Eu3+. Scintillation properties at 611 nm are finally proved using X-rays excitation.  相似文献   

17.
Nanocrystalline YVO4:Eu3+ was synthesized by direct precipitation reaction, which was then annealed at different temperatures. The results of XRD showed that nanocrystalline YVO4:Eu3+ could be obtained in solution at 60 °C, and the mean particle sizes of samples are increased as annealing temperature is increased. The results of TEM exhibit that the sizes of samples are around 5-30 nm. Studies on the excitation spectra show that there are a large number of the structural distortions in smaller particles. By analyzing line splitting patterns and peaks broadening in the emission spectra, we consider that the deviations in intensity patterns of 5D0-7F2 are affected by distortions of crystal lattice. Some abnormal behaviors can be attributed to higher ratio of surface to volume, which lead to the different local symmetry environment of Eu3+ ions on the surface.  相似文献   

18.
La1−x(PO3)3:Tbx3+ (0<x0.6) were prepared using solid-state reaction. The vacuum ultraviolet (VUV) excitation spectrum of La0.55(PO3)3:Tb0.453+ indicates that the absorption of (PO3)33− groups locates at about 163 and 174 nm and the absorption bands of (PO3)33− groups (174 nm) and La3+–O2− (200 nm) and Tb3+ (213 nm) overlap each other. These results imply that the (PO3)33− groups can efficiently absorb the excited energy around 172 nm and transfer the energy to Tb3+. Under 172 nm excitation, the optimal photoluminescence (PL) intensity is obtained when Tb concentration reaches 0.45 and is about 71% of commercial phosphor Zn1.96SiO4:0.04 Mn2+ with chromaticity coordinates of (0.343, 0.578) and the decay time of about 4.47 ms.  相似文献   

19.
Barium calcium magnesium silicate (BaCa2MgSi2O8), a compound whose space group was obtained via X-ray diffraction data, was re-investigated using neutron diffraction techniques. A combined powder X-ray and neutron Rietveld method revealed that BaCa2MgSi2O8 crystallizes in the trigonal space group P3? (Z=1, a=5.42708(5) Å, c=6.79455(7) Å, V=173.310(4) Å3; Rp/Rwp=5.52%/7.63%), instead of the previously believed space group P3?m1. The difference in the two structures arises from the displacement of the O2 atom. Blue emission from Ba0.98Eu0.02Ca2MgSi2O8 under 325-nm excitation is ascribed to the 4f65d1→4f7 transitions of Eu2+ ions at Ba sites and Ca sites. Site assignment of Eu2+ ions in the titled compound was performed by analysis of emission spectra at temperatures in the range of 4.2-300 K.  相似文献   

20.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号