首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We report the synthesis of Aurivillius-type phases incorporating magnetic M4+ cations (M=Mn, Ru, Ir), based on the substitution of M4+ for Ti4+ in Bi2Sr2(Nb,Ta)2TiO12. The key to incorporating these magnetic transition metal cations appears to be the partial substitution of Sr2+ for Bi3+ in the α-PbO-type layer of the Aurivillius phase, leading to a concomitant decrease in the M4+ content; i.e., the composition of the prepared compounds was Bi2−xSr2+x(Nb,Ta)2+xM1−xO12, x≈0.5. These compounds only exist over a narrow range of x, between an apparent minimum (x≈0.4) Sr2+ content in the α-PbO-type [Bi2O2] layer required for Aurivillius phases to form with magnetic M4+ cations, and an apparent maximum (x≈0.6) Sr2+ substitution in this [Bi2O2] layer. Rietveld-refinement of synchrotron X-ray powder diffraction data making use of anomalous dispersion at the Nb and Ru K edges show that the overwhelming majority of the incorporated M cations occupy the central of the three MO6 octahedral layers in the perovskite-type block. Magnetic susceptibility measurements are presented and discussed in the context of the potential for multiferroic (magnetoelectric) properties in these materials.  相似文献   

2.
Compounds in the solid solution series Ca1−xNaxTi1−xTaxO3 were synthesized at 1300 °C, followed by annealing at 850 °C or 800 °C with quenching and/or slow cooling to room temperature. Rietveld refinement of their powder X-ray diffraction patterns show that all compounds are single-phase ternary perovskites which adopt the space group Pbnm (a≈b≈√2ap; c≈2ap; Z=4) at ambient conditions. The unit cell parameters and cell volumes of the compounds increase regularly with increasing values of x. The coordination of the A-site cations changes throughout the series from eight for CaTiO3 to nine for NaTaO3. Compounds with 0?x ?0.4 have A-site cations in eight fold coordination, whereas the coordination of those with 0.4<x<0.9 is ambiguous. Analysis of the crystal chemistry of the compounds shows that the change in coordination at x=0.4 is related to the departure of the B-site cations from the second coordination sphere of the A-site cations, as in compounds with x>0.4 the A-IIO distances become less than the A-B intercation distances. Contemporaneous with these coordination changes, the tilt angles of the BO6 polyhedra decrease with increasing values of x. This solid solution series is unusual in that these structural and coordination changes occur regardless that Goldschmidt tolerance factors remain essentially constant at approximately 0.89, and observed tolerance factors, assuming eight fold coordination of the A-site cations, range only from 0.91 to 0.93 (0?x?0.8).  相似文献   

3.
The Sr3RFe4O10.5 (R=Y, Ho, Dy) anion-deficient perovskites were prepared using a solid-state reaction in evacuated sealed silica tubes. Transmission electron microscopy and 57Fe Mössbauer spectroscopy evidenced a complete A-cations and oxygen vacancies ordering. The structure model was further refined by ab initio structure relaxation, based on density functional theory calculations. The compounds crystallize in a tetragonal a≈2√2ap≈11.3 Å, с≈4сp≈16 Å unit cell (ap: parameter of the perovskite subcell) with the P42/mnm space group. Oxygen vacancies reside in the (FeO5/43/4) layers, comprising corner-sharing FeO4 tetrahedra and FeO5 tetragonal pyramids, which are sandwiched between the layers of the FeO6 octahedra. Smaller R atoms occupy the 9-fold coordinated position, whereas the 10-fold coordinated positions are occupied by larger Sr atoms. The Fe sublattice is ordered aniferromagnetically up to at least 500 K, while the rare-earth sublattice remains disordered down to 2 K.  相似文献   

4.
Structural aspects of the distorted perovskite ABO3 phase Pr1−xSrxFeO3−w,x=0.00-0.80,w=0.000-0.332, were studied by powder X-ray diffraction, powder neutron diffraction, Mössbauer spectroscopy, and Fe K-, Sr K-, and Pr LIII-edge EXAFS techniques. The diffraction data revealed no indications for ordering of Pr and Sr at the A site, nor for oxygen vacancy ordering at O sites for heavily reduced samples. Mössbauer spectroscopy showed octahedral, square pyramidal, and tetrahedral Fe coordinations with relative amounts closely following the predictions for a binomial distribution of oxygen vacancies. In addition to Fe3+ and Fe4+, also Fe5+ appears at 77 K for (G-type) antiferromagnetic samples with high average Fe valence. This suggests dynamic 2 Fe4+↔Fe3++Fe5+ fluctuations. At 296 K, a mixed valence Fe(3+n)+ component significantly improved the fit of Mössbauer spectra for the most oxidized paramagnetic samples. The qualitative EXAFS study shows that the local environments for Fe, Pr, and Sr strongly depend on x and w. The local Pr- and Sr-site geometries differ significantly from the cubic average structure for Pr0.50Sr0.50FeO2.746.  相似文献   

5.
Gd1−xSrxFeO3−δ ferrites have been studied by means of X-ray powder diffraction in the whole composition range. Single-phase solid solution is found for x<0.09 and for x>0.63. At intermediate Sr content, phase segregation takes place. Compounds with x?0.05 crystallize in the orthorhombic structure, space group Pbnm. Oxygen-deficient Gd1−xSrxFeO3−δ with x?2/3 are cubic or nearly cubic. The oxygen vacancies stabilize the cubic phase for x=2/3 whereas highly oxidized samples show an orthorhombic distortion, which has not been observed earlier. Magnetic and electrical properties have been measured for the single-phase solid solutions. Gd1−xSrxFeO3−δ compounds with x?2/3 order antiferromagnetically below ∼100 K. In the paramagnetic region, their susceptibility follows the Curie-Weiss law in all but SrFeO2.96 compound. These ferrites show semiconducting behavior in the electrical transport likely related to atomic disorder. We find that the conductivity activation energy becomes larger by increasing either the Gd content or the oxygen vacancies.  相似文献   

6.
Structures of the double perovskites Ba2Sr1−xCaxWO6 have been studied by the profile analysis of X-ray diffraction data. The end members, Ba2SrWO6 and Ba2CaWO6, have the space group I2/m (tilt system a0bb) and Fmm (tilt system a0a0a0), respectively. By increasing the Ca concentration, the monoclinic structure transforms to the cubic one via the rhombohedral R3¯ phase (tilt system aaa) instead of the tetragonal I4/m phase (tilt system a0a0c). This observation supports the idea that the rhombohedral structure is favoured by increasing the covalency of the octahedral cations in Ba2MM′O6-type double perovskites, and disagrees with a recent proposal that the formation of the π-bonding, e.g., d0-ion, determines the tetragonal symmetry in preference to the rhombohedral one.  相似文献   

7.
X-ray powder diffraction and resistivity measurements were performed on Bi2Sr2CaCu2O8+δ ceramics substituted by Y and Zn for Ca and Cu sites, respectively. X-ray diffraction patterns show an incommensurate modulated structure along the b-axis. The structural refinements were carried out using the four-dimensional space group Bbmb(0β1)0 0 0. From the X-ray peak profiles analysis, an anisotropic line-shape broadening was observed. The use of the “Williamson and Hall” method allows distinguishing the origin of broadening as mainly due to microstrains. A large transition from a metallic to semiconductor behaviour is observed on the resistivity curves at x≈0.4 for Bi2Sr2Ca1−xYxCu2O8+δ and at x≈0.36 for Bi2Sr2Ca1−xYxCu1.94Zn0.06O8+δ, which can be also correlated to the defects. Oppositely to the metallic behaviour, which satisfies the Mathiessen's rule, the semiconducting one can be modelled by a variable range hopping process.  相似文献   

8.
The orthorhombic-tetragonal phase transition in the perovskite series Sr1−xCaxMnO3 0.4?x?0.6 has been studied by synchrotron X-ray powder diffraction. At room temperature the Ca rich oxides x?0.45 have the orthorhombic Pbnm superstructure whereas Sr0.6Ca0.4MnO3 is two phases with both tetragonal I4/mcm and orthorhombic Pbnm. Analysis of the octahedral tilts suggest the co-existence of these two phases is a consequence of a first-order I4/mcm to Pbnm transition. The evolution of the structure of Sr0.5Ca0.5MnO3 with temperature is also described and this is found to evolve from orthorhombic to tetragonal and ultimately cubic.  相似文献   

9.
A melting and glass recrystallization route was carried out to stabilize a new tetragonal form of Bi2SiO5 with bismuth partially substituted by lanthanum. The crystal structure of Bi2−xLaxSiO5 (x∼0.1) was determined from powder X-ray and neutron diffraction data (space group I4/mmm, , c=15.227(1) Å, V=224.18 Å3, Z=2; reliability factors: RBragg=5.65%, Rp=14.6%, Rwp=16.8%, Rexp=8.3%, χ2=8.3 (X-ray) and RBragg=2.40%, Rp=8.1%, Rwp=7.5%, Rexp=4.2%, χ2=3.3 (neutrons); 11 structural parameters refined).The main effect of lanthanum substitution is to introduce, by removing randomly some bismuth 6s2 lone pairs, a structural disorder in the surroundings of (Bi2O2)2+ layers, that is in the (SiO3)2− pyroxene files arrangement. It results in a symmetry increase relatively to the parent compound Bi2SiO5, which is orthorhombic. The two structures are compared.  相似文献   

10.
Subsolidus phase relations have been determined for the Bi-Mn-Nb-O system in air (750-900 °C). Phases containing Mn2+, Mn3+, and Mn4+ were all observed. Ternary compound formation was limited to pyrochlore (A2B2O6O′), which formed a substantial solid solution region at Bi-deficient stoichiometries (relative to Bi2(Mn,Nb)2O7) suggesting that ≈14-30% of the A-sites are occupied by Mn (likely Mn2+). X-ray powder diffraction data confirmed that all Bi-Mn-Nb-O pyrochlores form with structural displacements, as found for the analogous pyrochlores with Mn replaced by Zn, Fe, or Co. A structural refinement of the pyrochlore 0.4000:0.3000:0.3000 Bi2O3:Mn2Ox:Nb2O5 using neutron powder diffraction data is reported with the A and O′ atoms displaced (0.36 and 0.33 Å, respectively) from ideal positions to 96g sites, and with Mn2+ on A-sites and Mn3+ on B-sites (Bi1.6Mn2+0.4(Mn3+0.8Nb1.2)O7, (?227), a=10.478(1) Å); evidence of A or O′ vacancies was not found. The displacive disorder is crystallographically analogous to that reported for Bi1.5Zn0.92Nb1.5O6.92, which has a similar concentration of small B-type ions on the A-sites. EELS spectra for this pyrochlore were consistent with an Mn oxidation between 2+ and 3+. Bi-Mn-Nb-O pyrochlores exhibited overall paramagnetic behavior with negative Curie-Weiss temperature intercepts, slight superparamagnetic effects, and depressed observed moments compared to high-spin, spin-only values. At 300 K and 1 MHz the relative dielectric permittivity of Bi1.600Mn1.200Nb1.200O7 was ≈128 with tan δ=0.05; however, at lower frequencies the sample was conductive which is consistent with the presence of mixed-valent Mn. Low-temperature dielectric relaxation such as that observed for Bi1.5Zn0.92Nb1.5O6.92 and other bismuth-based pyrochlores was not observed. Bi-Mn-Nb-O pyrochlores were readily obtained as single crystals and also as textured thin films using pulsed laser deposition.  相似文献   

11.
Thermoelectric properties of polycrystalline La1−xSrxCoO3, where Sr2+ is substituted in La3+ site in perovskite-type LaCoO3, have been investigated. Sr-doping increases the electrical conductivity (σ) of La1−xSrxCoO3, and also decreases the Seebeck coefficient (S) for 0.01?x?0.40. A Hall coefficient measurement reveals that the increase in electrical conductivity arises from increases in both carrier concentration and the Hall mobility. The decrease in the Seebeck coefficient is caused by a decrease in carrier effective mass as well as increase in carrier concentration. The highest power factor (σS2) is 3.7×10−4 W m−1 K−2 at 250 K for x=0.10. The thermal conductivity (κ) is about 2 W m−1 K−1 at 300 K for 0?x?0.04, and increases for x?0.05 because of an increase in heat transport by conductive carrier. The thermoelectric properties of La1−xSrxCoO3 are improved by Sr-doping, and the figure of merit (Z=σS2 κ−1) reaches 1.6×10−4 K−1 for x=0.06 at 300 K (ZT=0.048). For heavily Sr-doped samples, the thermoelectric properties diminish mainly because of the decrease in the Seebeck coefficient and the increase in thermal conductivity.  相似文献   

12.
High-temperature electrical conductivity measurements, structural data from powder X-ray diffraction and 57Fe Mössbauer spectroscopy were combined to study the interrelationship of oxygen ion transport and p- and n-type transport in Sr2(Fe1−xGax)2O5, where x=0, 0.1 and 0.2. Although gallium substitution generally decreases the total ion-electron transport, the transition of the orthorhombic brownmillerite structure to a cubic phase on heating results in the recurrence of the conductivity to the same high level as in the parent ferrite (x=0). The changes of the partial contributions to the total conductivity as a function of x are shown to reflect a complicated interplay of the disordering processes that develop in the oxygen sublattice on heating in response to replacement of iron with gallium.  相似文献   

13.
Samples of Bi1−xTbxFeO3, with x=0.05, 0.10, 0.15, 0.20 and 0.25, have been synthesised by solid state reaction. The crystal structures of the perovskite phases, characterised via Rietveld analysis of high resolution powder neutron diffraction data, reveal a structural transition from the R3c symmetry of the parent phase BiFeO3 to orthorhombic Pnma symmetry, which is complete for x=0.20. The x=0.10 and 0.15 samples are bi-phasic. The transition from a rhombohedral to orthorhombic unit cell is suggested to be driven by the dilution of the stereochemistry of the Bi3+ lone pair at the A-site. The G-type antiferromagnetic spin structure, the size of the ordered magnetic moment (∼3.8 μB) and the TN (∼375 °C) are relatively insensitive to increasing Tb concentrations at the A-site.  相似文献   

14.
The n=3 Aurivillius material Bi2Sr2Nb2.5Fe0.5O12 is investigated and combined structural refinements using neutron powder diffraction (NPD) and X-ray powder diffraction data (XRPD) data reveal that the material adopts a disordered, tetragonal (I4/mmm) structure at temperatures down to 2 K. Significant ordering of Fe3+ and Nb5+ over the two B sites is observed and possible driving forces for this ordering are discussed. Some disorder of Sr2+ and Bi3+ over the M and A sites is found and is consistent with relieving strain due to size mismatch. Highly anisotropic thermal parameters for some oxygen sites suggest that the local structure may be slightly distorted with some rotation of the octahedra. Magnetic measurements show that the material behaves as a Curie-Weiss paramagnet in the temperature range studied with no evidence of any long-range magnetic interactions. Solid solutions including Bi3−xSrxNb2FeO12, Bi2Sr2−xLaxNb2FeO12 and Bi2Sr2Nb3−xFexO12 were investigated but single-phase materials were only successfully synthesised for a narrow composition range in the Bi2Sr2Nb3−xFexO12 system.  相似文献   

15.
A series of 25 members of the 1:3 ordered perovskite family of the type Ba4−xSrxNaSb3O12 has been synthesized and their structures determined using synchrotron X-ray and neutron powder diffraction techniques. At room temperature the sample Ba4NaSb3O12 has a cubic structure in space group with a=8.2821(1) Å, where the Na and Sb cations are ordered in the octahedral sites but there is no tilting of the (Na/Sb)O6 octahedra. As the average size of the A-site cation decreases, through the progressive replacement of Ba by Sr, tilting of the octahedra is introduced firstly lowering the symmetry to tetragonal in P4/mnc then to orthorhombic in Cmca and ultimately a monoclinic structure in P21/n as seen for Sr4NaSb3O12 with a=8.0960(2) Å, b=8.0926(2) Å, c=8.1003(1) Å and β=90.016(2)°. The powder neutron diffraction studies show that the orthorhombic and tetragonal phases in Cmca and P4/mnc co-exist at room temperature for samples with x between 1.5 and 2.  相似文献   

16.
A combination of electron, synchrotron X-ray and neutron powder diffraction reveals a new orthorhombic structure type within the Sr-doped rare earth perovskite cobaltates Ln1−xSrxCoO3−δ (Ln=Y3+, Dy3+, Ho3+, Er3+, Tm3+and Yb3+). Electron diffraction shows a C-centred cell based on a 2√2ap×4ap×4√2ap superstructure of the basic perovskite unit. Not all of these very weak satellite reflections are evident in the synchrotron X-ray and neutron powder diffraction data and the average structure of each member of this series could only be refined based on Cmma symmetry and a 2√2ap×4ap×2√2ap cell. The nature of structural and magnetic ordering in these phases relies on both oxygen vacancy and cation distribution. A small range of solid solution exists where this orthorhombic structure type is observed, centred roughly around the compositions Ln0.2Sr0.8CoO3−δ. In the case of Yb3+ the pure orthorhombic phase was only observed for 0.850?x?0.875. Tetragonal (I4/mmm; 2ap×2ap×4ap) superstructures were observed for compositions having higher or lower Sr-doping levels, or for compounds with rare earth ions larger than Dy3+. These orthorhombic phases show mixed valence (3+/4+) cobalt oxidation states between 3.2+ and 3.3+. DC magnetic susceptibility measurements show an additional magnetic transition for these orthorhombic phases compared to the associated tetragonal compounds with critical temperatures > 330 K.  相似文献   

17.
A new oxide, Bi14Sr21Fe12O61, with a layered structure derived from the 2212 modulated type structure Bi2Sr3Fe2O9, was isolated. It crystallizes in the I2 space group, with the following parameters: a=16.58(3) Å, b=5.496(1) Å, c=35.27(2) Å and β=90.62°. The single crystal X-ray structure determination, coupled with electron microscopy, shows that this ferrite is the m=5 member of the [Bi2Sr3Fe2O9]m[Bi4Sr6Fe2O16] collapsed family. This new collapsed structure can be described as slices of 2212 structure of five bismuth polyhedra thick along , shifted with respect to each other and interconnected by means of [Bi4Sr6Fe2O16] slices. The latter are the place of numerous defects like iron or strontium for bismuth substitution; they can be correlated to intergrowth defects with other members of the family.  相似文献   

18.
Two new Sr-rich “1201”-type oxides, Bi0.4Sr2.5Cr1.1O4.9 and Bi0.4Sr2.5Fe1.1O5 have been synthesized. These compounds, intergrowths of double rock-salt layers with single perovskite layers, show a 1:1 ordering between (Bi,M) and Sr species within the intermediate rock-salt layer [Bi0.4M0.1Sr0.5O]. The XANES study shows that bismuth is mainly trivalent, whereas iron is mixed valent containing 50% Fe3+ and 50% Fe4+ (also confirmed by Mössbauer), and chromium could be a mixture of Cr3+ and Cr6+ sitting in the perovskite and rock-salt-type sites, respectively. Both compounds exhibit antiferromagnetic interactions. The Cr-phase is a strong insulator, whereas the Fe-phase exhibits a semi-conductor-like resistivity whose value at room temperature is close to that of isotypic cobaltite.  相似文献   

19.
The two crystallographically non-equivalent Co atoms of the quasi-one-dimensional crystal structure of Ca3Co2O6 form chains with alternating, face-sharing polyhedra of Co2O6 trigonal prisms and Co1O6 octahedra. This compound forms a substitutional solid-solution phase with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca3Co2−vScvO6 (more specifically Ca3Co1Co21−vScvO6) extends up to v≈0.55. The crystal structure belongs to space group Rc with lattice parameters (in hexagonal setting): 9.0846(3)?a?9.1300(2) Å and 10.3885(4)?c?10.4677(4) Å. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice.  相似文献   

20.
Nanosize nickel-substituted cobalt ferrites were prepared using aerosol route and characterized by TEM, XRD, magnetic and Mössbauer spectroscopy. The particle size of as obtained samples was found to be ∼10 nm which increases upto ∼80 nm on annealing at 1200 °C. The unit cell parameter ‘a’ decreases linearly with the nickel concentration due to smaller ionic radius of nickel. The saturation magnetization for all the samples after annealing at 1200 °C lies in the range 47.6-84.5 emu/g. Room temperature Mössbauer spectra of as obtained samples exhibit a broad doublet, suggesting super paramagnetic nature of the sample. The broad doublet is further resolved into two doublets corresponding to the iron atoms residing at the surface and internal regions of the particle. The samples annealed at 1200 °C showed broad sextet, which is resolved into two sextets, corresponding to tetrahedrally and octahedrally coordinated Fe cations. Cation distribution calculated using XRD and Mössbauer data indicates a decrease in Fe3+(oct.)/Fe3+(tet.) ratio with increasing nickel concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号