首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
P. Huai  K. Nasu 《Phase Transitions》2013,86(7-8):649-658
A possible difference between the photoinduced phase and the thermally excited one is studied by using a two-dimensional extended Peierls-Hubbard model, which includes a strong electron-phonon coupling and a on-site interelectron repulsion, as well as an anharmonic lattice potential. Because of this anharmonicity, the system undergoes a first order phase transition from an insulating CDW state to a metallic one at a high temperature. Although some sign of an SDW order is expected to appear due to this repulsion, it is always hidden in any equilibrium phase of the present system. In fact, it is hidden, not only in the CDW ground state, but also in this metallic one, since the high temperature itself destroys the SDW order, far before the CDW-metal transition occurs, while a photo-excitation at low enough temperature is shown to generate a local metastable SDW domain. Therefore, to observe the presence of such Coulomb interaction and the resultant broken symmetry, a nonequilibrium photoinduced phase is shown to be most straightforward. Thus, the photoinduce phase transition can make an interaction appear as a broken symmetry only in this phase, even though this interaction is almost completely hidden in all the equilibrium phases from low temperature to high ones.  相似文献   

2.
The probability distribution of the order parameter is expected to take a universal scaling form at a phase transition. In a spin system at a quantum critical point, this corresponds to universal statistics in the distribution of the total magnetization in the low-lying states. We obtain this scaling function exactly for the ground state and first excited state of the critical quantum Ising spin chain. This is achieved through a remarkable relation to the partition function of the anisotropic Kondo problem, which can be computed by exploiting the integrability of the system.  相似文献   

3.
The influence of a structural distortion on the itinerant antiferromagnetic (IAF) phase and on the superconducting (S) phase is investigated using a free electron band structure for the electron and hole pockets. For equal concentrations of electrons and holes a metastable phase is found in which the lattice distortion coexists with the IAF or S phase. For unequal concentrations of electrons and holes the critical temperature and the value of the order parameter for the IAF or S phase (in the coexistence region) will always be enhanced by the onset of the structural distortion. The theoretical predictions are compared in the IAF case with the occurrence of a spin flip transition in chromium accompanied by a tetragonal distortion, and in the S case with experimental results on A-15 compounds exhibiting a martensitic phase transition.  相似文献   

4.
The observation of hysteresis effects in single molecule magnets like Mn12-acetate has initiated ideas of future applications in storage technology. The appearance of a hysteresis loop in such compounds is an outcome of their magnetic anisotropy. In this Letter we report that magnetic hysteresis occurs in a spin system without any anisotropy, specifically where spins mounted on the vertices of an icosahedron are coupled by antiferromagnetic isotropic nearest-neighbor Heisenberg interaction giving rise to geometric frustration. At T = 0 this system undergoes a first-order metamagnetic phase transition at a critical field Bc between two distinct families of ground state configurations. The metastable phase of the system is characterized by a temperature and field dependent survival probability distribution.  相似文献   

5.
The thermodynamic functions of a Fermi gas with spin population imbalance are studied in the temperature-asymmetry plane in the BCS limit. The low-temperature domain is characterized by an anomalous enhancement of the entropy and the specific heat above their values in the unpaired state, decrease of the gap and eventual unpairing phase transition as the temperature is lowered. The unpairing phase transition induces a second jump in the specific heat, which can be measured in calorimetric experiments. While the superfluid is unstable against a supercurrent carrying state, it may sustain a metastable state if cooled adiabatically down from the stable high-temperature domain. In the latter domain the temperature dependence of the gap and related functions is analogous to the predictions of the BCS theory.  相似文献   

6.
The low temperature anomaly in resistivity of heavily doped ferromagnetic semiconductors EuS can be explained by the first order phase transition from the uniform to a nonuniform state. At low temperatures the nonuniform state may realize as a metastable one.  相似文献   

7.
We consider a tapping dynamics, analogous to that in experiments on granular media, on spin glasses and ferromagnets on random thin graphs. Between taps, zero temperature single spin flip dynamics takes the system to a metastable state. Tapping corresponds to flipping simultaneously any spin with probability p. This dynamics leads to a stationary regime with a steady state energy E(p). We analytically solve this dynamics for the one-dimensional ferromagnet and +/-J spin glass. Numerical simulations for spin glasses and ferromagnets of higher connectivity are carried out; in particular, we find a novel first order transition for the ferromagnetic systems.  相似文献   

8.
The geometric phase of a central qubit coupling to the surrounding XY chain in a transverse field at finite temperature is studied in this Letter. An explicit analytical expression of the geometric phase for coupled qubit is obtained in the weak coupling limit when the surrounding spin chain is in a thermal equilibrium state. It is shown that the GP displays dramatic change around the quantum phase transition points of the spin chain at zero and a finite range of temperature by numerical analysis. The result reveals that the GP can be used as a tool to detect QPT when the spin chain system is at finite temperature.  相似文献   

9.
In spin-conversion (SC) compounds containing molecules organized around an iron (II) ion the fundamental level of the ion is low spin (LS), S = 0, and its first excited one is high spin (HS), S = 2. This energy diagram is due to the ligands field interaction on 3d electrons and to the spin pairing energy. Heating the compound increases the magnetic susceptibility which corresponds to a change of populations of both levels and consequently a change of spin value of the molecules. This mechanism, called spin conversion (SC), can be accompagnied by thermal hysteresis observed by studying magnetic susceptibility or high spin fraction. In that case one considers that the (SC) takes place through a first-order phase transition due to intermolecular interactions. In the atom-phonon coupling model the molecules are considered as two-level systems, or two-level atoms, and it is assumed that the elastic force constant value of the spring which links two atoms first neighbours is depending on the electronic states of both atoms. In this study we calculate the partition function of a linear chain of N atoms (N ≤ 16) and we describe the role of phonons and that of the parameter Δ which corresponds to the distance in energy between both levels. The chain free-energy function is F atph . We introduce for the chain a free-energy function defined by the set (F HS , F LS , F barr ) and we show that F atph tends towards the previous set when N → ∞. The previous set allows to describe a first order phase transition between a (LS) phase and a (HS) one. At the crossing point between the function F LS and F HS , and around this point, there is an intermediate free-energy barrier which prevents the chain to change phase which can lead to thermal hysteresis. The energy gap between the free-energy function F atph and that defined by the set (F HS , F LS , F barr ) is small. So we can expect that a nanoparticule takes for free-energy function that defined by the set and then displays a thermal hysteresis.  相似文献   

10.
We study the finite temperature property of a model on two dimensional square lattices with two Ising spins at each lattice site by Monte Carlo simulations. When those Ising spins at a lattice site are parallel the site is said to be in the high-spin state (HS), while when they are antiparallel the site is said to be in the low-spin state (LS). Throughout the study, the energy of HS is presumed to be higher than that of LS. Two Ising spins at each site are added to form a total spin, which interacts with its nearest neighbour total spins via spin-spin couplings. The spin-phonon coupling also is introduced via harmonic springs between nearest neighbour sites with spring constants and equilibrium distances depending on the spin states of the sites involved. In this system, we investigate the feature of transitions between LS and HS (to be called low/high spin transition (LHST)) by varying the temperature. As for the ferromagnetic interaction between total spins, the second order phase transition: pure HSmixed state of HS and LS is possible to occur in a pure spin system, as is expected from mean field calculations. The role of lattice distortions by the change of lattice spacings is shown to be essential for LHST: pure LS(pure)HS. In the model investigated, there appears an indication of the strong first order phase transition which reveals a conspicuous hysteresis.  相似文献   

11.
We report the effect of field, temperature and thermal history on the time dependence in resistivity and magnetization in the phase separated state of Al doped Pr(0.5)Ca(0.5)MnO(3). The rate of time dependence in resistivity is much higher than that of magnetization and it exhibits a different cooling field dependence due to percolation effects. Our analysis shows that the time dependence in physical properties depends on the phase transition dynamics, which can be effectively tuned by variation of temperature, cooling field and metastable phase fraction. The phase transition dynamics can be broadly divided into the arrested and unarrested regimes, and in the arrested regime this dynamics is mainly determined by time taken in the growth of critical nuclei. An increase in cooling field and/or temperature shifts this dynamics from the arrested to unarrested regime, and in this regime, this dynamics is determined by the thermodynamically allowed rate of formation of critical nuclei, which in turn depends on the cooling field and available metastable phase fraction. At a given temperature, a decrease in metastable phase fraction shifts the crossover from arrested to unarrested regimes towards lower cooling field. It is rather significant that in spite of the metastable phase fraction calculated from resistivity being somewhat off that of magnetization, their cooling field dependence exhibits a striking similarity, which indicates that the dynamics in arrested and unarrested regimes are so different that it comes out vividly provided that the measurements are performed around the percolation threshold.  相似文献   

12.
The perturbative effective potential for the Standard Model develops a barrier, at temperatures around the electroweak scale, which separates the minimum at zero field and a deeper non-zero minimum. This could create out of equilibrium conditions by inducing the localization of the Higgs field in a metastable state around zero. In this picture vacuum decay would occur through bubble nucleation. I show that there is an upper bound on the Higgs mass for the above scenario to be realized. The barrier must be high enough to prevent thermal fluctuations of the Higgs expectation value from establishing thermal equilibrium between the two minima. The upper bound is estimated to be lower than the experimental lower limit. This also imposes constraints on extensions of the Standard Model constructed in order to generate a strongly first order phase transition.  相似文献   

13.
We report detailed measurements of the low temperature magnetic phase diagram of Er2Ti2O7. Heat capacity and time-of-flight neutron scattering studies of single crystals reveal unconventional low-energy states. Er3+ magnetic ions reside on a pyrochlore lattice in Er2Ti2O7, where local XY anisotropy and antiferromagnetic interactions give rise to a unique frustrated system. In zero field, the ground state exhibits coexisting short and long-range order, accompanied by soft collective spin excitations previously believed to be absent. The application of finite magnetic fields tunes the ground state continuously through a landscape of noncollinear phases, divided by a zero temperature phase transition at micro{0}H{c} approximately 1.5 T. The characteristic energy scale for spin fluctuations is seen to vanish at the critical point, as expected for a second order quantum phase transition driven by quantum fluctuations.  相似文献   

14.
The dynamical response of spin-S(S=1, 3/2, 2, 3) Ising ferromagnet to the plane propagating wave, standing magnetic field wave and uniformly oscillating field with constant frequency are studied separately in two dimensions by extensive Monte Carlo simulation. Depending upon the strength of the magnetic field and the value of the spin state of the Ising spin lattice two different dynamical phases are observed. For a fixed value of S and the amplitude of the propagating magnetic field wave the system undergoes a dynamical phase transition from propagating phase to pinned phase as the temperature of the system is cooled down. Similarly in case with standing magnetic wave the system undergoes dynamical phase transition from high temperature phase where spins oscillate coherently in alternate bands of half wavelength of the standing magnetic wave to the low temperature pinned or spin frozen phase. For a fixed value of the amplitude of magnetic field oscillation the transition temperature is observed to decrease to a limiting value as the value of spin S is increased. The time averaged magnetisation over a full cycle of the magnetic field oscillation plays the role of the dynamic order parameter. A comprehensive phase boundary is drawn in the plane of magnetic field amplitude and dynamic transition temperature. It is found that the phase boundary shrinks inwards for high value of spin state S.Also in the low temperature(and high field) region the phase boundaries are closely spaced.  相似文献   

15.
We investigate a percolation process where an additional parameter q is used to interpolate between the classical Erd¨os–R′enyi(ER) network model and the smallest cluster(SC) model. This model becomes the ER network at q = 1, which is characterized by a robust second order phase transition. When q = 0, this model recovers to the SC model which exhibits a first order phase transition. To study how the percolation phase transition changes from second order to first order with the decrease of the value of q from 1 to 0, the numerical simulations study the final vanishing moment of the each existing cluster except the N-cluster in the percolation process. For the continuous phase transition,it is shown that the tail of the graph of the final vanishing moment has the characteristic of the convexity. While for the discontinuous phase transition, the graph of the final vanishing moment possesses the characteristic of the concavity.Just before the critical point, it is found that the ratio between the maximum of the sequential vanishing clusters sizes and the network size N can be used to decide the phase transition type. We show that when the ratio is larger than or equal to zero in the thermodynamic limit, the percolation phase transition is first or second order respectively. For our model, the numerical simulations indicate that there exists a tricritical point qcwhich is estimated to be between0.2 qc 0.25 separating the two phase transition types.  相似文献   

16.
We study a long-range interacting spin chain placed in a staggered magnetic field using microcanonical approach and obtain the global phase diagram. We find that this model exhibits both first order phase transition and second order phase transition separated by a tricritical point, and temperature jump can be observed in the first order phase transition.  相似文献   

17.
The Kuramoto model describes a system of globally coupled phase-only oscillators with distributed natural frequencies. The model in the steady state exhibits a phase transition as a function of the coupling strength, between a low-coupling incoherent phase in which the oscillators oscillate independently and a high-coupling synchronized phase. Here, we consider a uniform distribution for the natural frequencies, for which the phase transition is known to be of first order. We study how the system close to the phase transition in the supercritical regime relaxes in time to the steady state while starting from an initial incoherent state. In this case, numerical simulations of finite systems have demonstrated that the relaxation occurs as a step-like jump in the order parameter from the initial to the final steady state value, hinting at the existence of metastable states. We provide numerical evidence to suggest that the observed metastability is a finite-size effect, becoming an increasingly rare event with increasing system size.  相似文献   

18.
The flopside spin structure, where the magnetic moments form two sublattices which at low temperatures are mutually perpendicular was first found in HoP and then in other rare-earth pnictides. There are large orbital contributions to the magnetic moments of these compounds and it had been thought that they play an important role in stabilizing the flopside spin structure. However, recently this spin structure has been found in GdMg. As Gd3+ is an S-state ion, there are negligible orbital effects. We have developed a model Hamiltonian which is able to explain both the occurence of initially a ferromagnetic phase and then at low temperature the flopside spin structure in two very dissimilar compounds GdMg and HoP. For GdMg we find that the competition between the near neighbor ferromagnetic and antiferromagnetic bilinear exchange interactions is such that while they produce a transition to a ferromagnetic phase at 110 K, an unusually small amount of biquadratic (quadrupolar) coupling is able to stabilize a flopside phase at low temperature which is able to resist collapse in a field as large as 150 kOe. For HoP we find that although anisotropic bilinear pair interactions - as for example pseudo-dipole - exist, they cannot be the primary origin of the flopside phase; quadrupole pair interactions are essential to explain the appearance of first the ferromagnetic and then the flopside phases found in HoP. On the basis of our model calculations we are able to explain the data extant on these compounds and we make some predictions which are open to experimental verification.  相似文献   

19.
In order to produce a supercooled liquid phase of molecular hydrogen that may possibly change at a sufficiently low temperature to a superfluid state, it is suggested to reduce the temperature of its equilibrium coexistence with the solid phase by means of developing different pressures in these phases through the use of linear mechanical pressure on the solid phase or of external electric field. The thermodynamic functions of hydrogen are calculated in both the stable and metastable regions; its phase diagram and the region of possible transition to a superfluid state are also found. The values of excess pressure on the solid phase and of external electric field intensity are estimated, which are necessary for the stabilization of this state.  相似文献   

20.
A microscopic theory is presented for the local moment formation near a nonmagnetic impurity or a copper defect in high-Tc superconductors. We use a renormalized mean-field theory of the t-J model for a doped Mott insulator and study the fully self-consistent, spatially unrestricted solutions of the d-wave superconducting (SC) state in both the spin S=0 and S=1/2 sectors. We find a transition from the singlet d-wave SC state to a spin doublet SC state when the renormalized exchange coupling exceeds a doping dependent critical value. The induced S=1/2 moment is staggered and localized around the impurity. It arises from the binding of an S=1/2 nodal quasiparticle to the impurity. The local density of states is calculated and connections to NMR and STM experiments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号