首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ternary molybdates Li3Ba2R3(MoO4)8 (R = La-Lu, Y) were synthesized by the solid-phase method. Their unit cell parameters were determined and IR spectra were assigned. The compounds are isostructural to each other and crystallize in the monoclinic system (space group C2/c).  相似文献   

2.
Anhydrous orthoborates RM3(BO3)4, where R = Y, La–Lu, M = Al, Ga, Cr, Fe, with huntite structure type are considered as multifunctional laser materials. The crystal structure of these borates is either rhombohedral with space group R32 (D37) (Z = 3) or monoclinic with space group C2/c (C2h6) (Z = 4) depending on the growth conditions. Both modifications have very close polytypic structures, and it is difficult to identify them by powder diffraction data. In this context, double borates of rare-earth cations and Cr3+ have been grown from high-temperature solutions and are characterized by Raman and infrared spectroscopy in a crystalline state in combination with factor group analysis of vibrational modes. The assignment for the stretching and bending vibrations of BO33− groups and external modes has been made. Some external modes have been identified by study of mass effect (Al–Cr, La–Ho). Comparison of the Raman spectra of these borates shows redistribution of band intensities of two spectral modifications, related to different symmetry groups. As predicted by factor group analysis, the number of IR-active vibrational modes of stretching and bending vibrations of BO33− units significantly increases in infrared spectra of monoclinic borates in comparison with rhombohedral ones. The dependence of the realized borate space group on the crystal growth conditions and the sort of rare-earth atom was revealed. Both GdCr3(BO3)4 and EuCr3(BO3)4 borates crystallize in space group R32 irrespective of growth conditions. The borates with the large rare-earth elements La–Nd always form the monoclinic structures, irrespective of crystallization temperature. The borates SmCr3(BO3)4, TbCr3(BO3)4 and DyCr3(BO3)4 have been obtained in two modifications in dependence of crystalline borate substance/solvent ratio and related temperature of crystallization.  相似文献   

3.
By means of IR spectroscopy with the use of factor group analysis for vibrations of the B-O bond, rare-earth borates with a general formula of RM3(BO3)4 (R is Nd, Gd, and Y; M is Al, Ga, Cr, and Fe) and related polytypic structures are assigned to space groups R32 or 2/c. Compounds with both almost homogeneous structures and with inclusions of the monoclinic polytype are revealed among rhombohedral borates. The latter is most typical of phases with a small octahedral Al cation. It is shown that in the monoclinic modification of NdAl and NdCr borates fragments of the rhombohedral phase are always present. Alternation of differently ordered structural fragments is determined by temperature conditions of crystallization.  相似文献   

4.
Phase formation in the BaB2O4-NaBO2-MBO3 (M = Sc, La, Y) system was studied using solid-phase synthesis, visual polythermal analysis, and spontaneous crystallization. This system was shown to be suitable for growing LaBO3. A new compound, ScBaNa(BO3)2, was obtained (trigonal crystal system; space group R \(\bar 3\) unit cell parameters: a = 5.239(1) Å, c = 34.591(1) Å, and V = 822.38(4) Å3).  相似文献   

5.
The single crystals of [UO2(C2O4){CONH2N(CH3)2}2] were synthesized and studied by X-ray diffraction. The crystals are monoclinic, a = 7.461(2) Å, b = 8.828(2) Å, c = 11.756(2) Å, β = 107.21(3)°, space group Pc, Z = 2, R = 2.94%. The structure comprises infinite chains [UO2(C2O4){CONH2N(CH3)2}2] extended along [001] and corresponding to the AT11M 2 1 crystallochemical group (A = UO 2 2+ , T11 = C2O 4 2? , M1 = N,N-CONH2N(CH3)2) of uranyl complexes. The chains are connected into a three-dimensional framework by hydrogen bonds involving the oxygen atoms of oxalate and uranyl ions and the N,N-dimethylcarbamide methyl groups.  相似文献   

6.
Compounds described as V2O3(XO4)2, where X = S or Se, were prepared from vanadium(V) oxide mixtures with concentrated sulfuric and selenic acids. The physicochemical properties of the products were studied; for V2O3(SeO4)2, the crystal structure was determined by powder X-ray diffraction and neutron diffraction, and its key differences from the structure of V2O3(SO4)2 were identified. V2O3(SeO4)2 crystallizes in the monoclinic system with the unit cell parameters a = 15.3831(2)Å, b = 5.54096(5)Å, c = 9.71644(7)Å, β = 111.886(1)°, V = 768.51Å3, space group C2/c (no. 15).  相似文献   

7.
The present research work reports the study on crystal structure, vibrational spectroscopy and thermal analysis of organic-inorganic hybrid compound (C6H5(CH2)2NH3)2CdCl4. Single crystals of bis(phenethylammonium)tetrachlorocadmate (C6H5(CH2)2NH3)2CdCl4 (PEA–Cd) were obtained by diffusion at room temperature. This compound crystallizes in the orthorhombic space group C2cb with unit cell parameters a = 7.4444(2) Å, b = 38.8965(3) Å, c = 7.3737(2) Å and Z = 4. Single crystal structure has been solved and refined to R = 0.036 and wR = 0.092. The structure consists of an extended [CdCl4]2– network and two [C6H5(CH2)2NH3]+ cations to form a two-dimensional perovskite system. The infrared (IR) spectrum of the title compound was recorded at room temperature. Differential scanning calorimetry (DSC) was used to investigate the phase transition; this compound exhibits a reversible single solid-solid phase transition.  相似文献   

8.
Polycrystalline samples of double barium borates of the composition Ba3R(BO3)3, R = Ho, Yb, Sc, were synthesized by the method of solid-phase reactions. The temperature dependence of the electrical conductivity of the compounds obtained was studied at 200–500°C.  相似文献   

9.
A ternary salt system Rb2MoO4-Eu2(MoO4)3-Hf(MoO4)2 was studied in the subsolidus area by X-ray phase analysis. A novel ternary molybdate, Rb4.98Eu0.86Hf1.11(MoO4)6, formed in the system. The Rb4.98Eu0.86Hf1.11(MoO4)6 rubidium-europium-hafnium molybdate crystals were grown by solution-melt crystallization under the spontaneous nucleation conditions. The structure and composition of this compound were refined by single crystal X-ray diffraction (X8 APEX automated diffractometer, MoK α radiation, 1753 F(hkl), R = 0.0183). The crystals are trigonal, a = b = 10.7264(1) Å, c = 38.6130(8) Å, V = 3847.44(9) Å3, Z = 6, space group R \(\bar 3\) c. The three-dimensional mixed framework of the structure comprises Mo tetrahedra and two types of octahedra, (Eu,Hf)O6 and HfO6. The large cavities of the framework include two types of the rubidium atom. The distribution of the Eu3+ and Hf4+ cations over two crystallographic positions was refined.  相似文献   

10.
A complex of uranyl perchlorate with imidazolidine-2-one as the molecular ligand, [UO2(Imon)4(H2O)](ClO4)2 (I), was synthesized and structurally characterized by X-ray diffraction analysis. The coordination number of the uranium atom is 7. The nearest environment of the uranyl ion includes four O atoms of the imidazolidine-2-one molecules and one O atom of the water molecule. The perchlorate anions are outer-sphere ligands. The crystals are monoclinic: space group P21/c; a = 16.294(3) Å, b = 16.135(3) Å, c = 9.987(2) Å, = 97.69 (3)°, V = 2603.0 (9) Å3, (calcd) = 2.117 g/cm3, Z = 4. The IR and luminescence spectra of the complex were recorded.Translated from Koordinatsionnaya Khimiya, Vol. 30, No. 12, 2004, pp. 919–924.Original Russian Text Copyright © 2004 by Andreev, Antipin, Budantseva, Tuchina, Serezhkina, Fedoseev, Yusov.  相似文献   

11.
Arsenic 4-methoxy-8-mercaptoquinolinate As[C9H5(4-OCH3)NS]3 (I) was synthesized and studied by X-ray diffraction. Crystals are trigonal: space group R3, a = b = 13.9867(4) Å, c = 12.4991(5) Å, γ = 120°, V = 2117.58(12) Å3, ρ = 1.519 g/cm3, Z = 3. An arsenic atom in the crystal structure occupies a special position on axis 3. The structural unit of the crystal (neutral complex I) has symmetry C3. 4-Methoxy-8-mercaptoquinoline acts as a bidentate (N,S-) ligand. The coordination polyhedron of the arsenic atom is a symmetric octahedron (3S + 3N) or, with allowance for the lone electron pair, ψ-one-capped octahedron (3S + 3N + E). Bond lengths are as follows: As-S, 2.3179(7)Å; As…N 2.688(3) Å. The geometries of coordination polyhedra of arsenic atoms are compared in the crystal structures of As(C9H6NS)3, As[C9H5(2-CH3)NS]3, and As[C9H5(4-CH3)NS]3.  相似文献   

12.
Coordination polymers [AgCF3CO2(2,3-Et2Pyz)](I)(2,3-Et2Pyz-C8H12N2) and [AgCF3CO2(Bpeta)] (II) (Bpeta is 4′4-bipyridylethane, C12H12N2) are synthesized. Their structures are determined. The crystals of compound I are monoclinic, space group P2(1)/n, a = 7.185(1), b = 14.754(1), c = 12.317(1)Å, β = 97.09(1)°, V = 1295.7(2) Å3, ρcalcd = 1.831 g/cm3, Z = 4. Structure I consists of infinite chains of doubled polymeric chains joined by silver carboxylate dimers [[Ag2(CF3CO2)2(Et2Pyz)2]. The coordination polyhedron of Ag+ is a distorted tetrahedron. The crystals of compound II are orthorhombic, space group Pbca, a = 13.555(3), b = 13.991(3), c = 16.449(3) Å, V = 3119.5(11) Å3, ρcalcd = 1.725 g/cm3, Z = 8. Doubled polymeric chains with the Ag…Ag bond (3.16 Å) are also formed in structure II. Supramolecular layers are formed in the structure due to the weak π-π-stacking interaction between the aromatic groups of chains. The CF3CO 2 ? anion is weakly bound to Ag+ (Ag-Oavg 2.790 Å).  相似文献   

13.
A new complex [UO2CrO4{CH3CON(CH3)2}2] (I) was studied by thermal analysis, IR spectroscopy, and X-ray crystallography. The crystals are monoclinic: a = 13.8108(11) Å, b = 8.6804(7) Å, c = 13.0989(10) Å, β = 104.777(1)°, V = 1518.4(2) Å3, space group P21/c, Z = 4, R = 2.39%. The structure of I contains infinite chains of the [UO2CrO4{CH3CON(CH3)2}2] composition running along [001]; the complex belongs to the AT11M1 2 crystal-chemical group (A = UO 2 2+ , T11 = CrO 4 2? , M1 = CH3CON(CH3)2) of uranyl complexes. The chains are linked into a three-dimensional framework due to hydrogen bonds between oxygen atoms of chromate ions and hydrogen atoms of methyl groups of the dimethylacetamide.  相似文献   

14.
By single crystal X-ray analysis, the atomic structure of the crystals of [Eu(NO3)3(HMPA)3] complex (HMPA is hexamethylphosphorotriamide) possessing intense triboluminescence is determined. Symmetry of centrosymmetrical crystals is monoclinic: a = 13.785(1) Å, b = 19.746(2) Å, c = 14.723(1) Å, β= 102.143(2)°, P21/n space group, Z = 4, d x = 1.484 g/cm3. The crystal structure is represented by separate C18H54EuN12O12P3 complexes linked by van der Waals interactions with pronounced cleavage planes. The coordination polyhedron of Eu(III) atom reflects the state of distorted square antiprism. The possible causes of spectral differences in the Stark structure of photo- and triboluminescence are discussed.  相似文献   

15.
The structures of three novel octahedral rhenium cluster compounds [Re6S8(CN)2(py)4]·H2O (1), [Re6S8(CN)2(4-Mepy)4] (2), [Re6S8(CN)2(4-Mepy)4]·4-Mepy (3) (py = pyridine, 4-Mepy = 4-methylpyridine) are determined by X-ray crystallography. Crystal data are: C2/m space group, a = 14.813(1) Å, b = 14.772(1) Å, c = 9.2122(6) Å, β = 119.085(2)°, V = 1761.7(2) Å3, d x = 3.318 g/cm3, R = 0.0585 (1); I41/amd space group, a = 16.0018(3) Å, c = 14.7186(5) Å, V = 3768.81(16) Å3, d x = 3.169 g/cm3, R = 0.0489 (2); P21/c space group, a = 9.0452(4) Å, b = 15.8065(7) Å, c = 15.2951(6) Å, β = 103.700(2)°, V = 2124.57(16) Å3, d x = 2.957 g/cm3, R = 0.0245 (3). Molecular cluster complexes interact via π-π stacking affording 3D frameworks in 1 and 2 and chains in 3.  相似文献   

16.
The crystal structures of compounds from the series [M(NH3)5Cl](NO3)2, (M = Ir, Rh, Ru) were described. The compounds crystallized in the tetragonal crystal system, space group I4, Z = 2. Crystal data for [Ir(NH3)5Cl](NO3)2 (I): a = 7.6061(1) Å, b = 7.6061(1) Å, c = 10.4039(2) Å, V = 601.894(16) Å3, ρcalc = 2.410 g/cm3, R = 0.0087; [Rh(NH3)5Cl](NO3)2 (II): a = 7.5858(5) Å, b = 7.5858(5) Å, c = 10.41357(7) Å, V = 599.24(7) Å3, ρcalc = 1.926 g/cm3, R = 0.0255; [Ru(NH3)5Cl](NO3)2 (III): a = 7.5811(6) Å, b = 7.5811(6) Å, c = 10.5352(14) Å, V = 605.49(11) Å3, ρcalc = 1.896 g/cm3, R = 0.0266. The compounds were defined by IR spectroscopy and XRPA and thermal analyses.  相似文献   

17.
The coordination polymers [AgPF6(Me4Pyz)2] (I) and [AgPF6(2,3-Et2Pyz)2] (II) were synthesized, and their structures were determined. Crystals of I are monoclinic, space group C2/c, a = 10.213(2) Å, b = 16.267(3) Å, c = 12.663(3) Å, β = 92.90(3)°, V = 2102.1(7) Å3, ρcalcd = 1.660 g/cm3, Z = 4. The structure of I is built of polymeric zigzag [Ag(C8H12N2)] + chains and octahedral [PF6] anions. The coordination polyhedron of the Ag+ ion is a flat triangle. Crystals of II are tetragonal, space group P \(\bar 4\)2(1)/c,a = b = 10.641(1) Å, c = 18.942(1) Å, V = 2144.6(2) Å3, ρcalcd = 1.627 g/cm3, Z = 4. In the structure of II, 2D cationic layers of fused square rings exist; the rings consist of four Ag+ cations linked by four bridging ligands of diethylpyrazine Et2Pyz. The coordination polyhedron of the Ag+ ion is an irregular four-vertex polyhedron.  相似文献   

18.
Novel complex salts [Au(en)2]Cl(ReO4)2 (I) and [Au(en)2](ReO4)3 (II), en = ethylenediamine, are obtained. Their crystal structures are determined by single crystal X-ray diffraction. Complex I crystallizes in the triclinic crystal system: a = 6.2172(7) Å, b = 7.1644(8) Å, c = 8.8829(8) Å, α = 96.605(4)°, β = 110.000(4)°, γ = 97.802(4)°, P-1 space group, Z = 1, d x = 3.905 g/cm3; complex II crystallizes in the monoclinic crystal system: a = 15.244(2) Å, b = 7.6809(8) Å, c = 9.3476(12) Å, β = 127.004(3)°, C2 space group, Z = 4, d x = 4.057 g/cm3.  相似文献   

19.
The compounds AMMgE(PO4)3 (A = Na, K, Rb, Cs; M = Sr, Pb, Ba; E = Ti, Zr) were synthesized by the sol–gel procedure followed by heat treatment and studied by X-ray diffraction, differential thermal and electron microprobe analysis, and IR spectroscopy. The phosphates crystallize in the kosnarite (KZr2(PO4)3, space group \(R\bar 3\)) and langbeinite (K2Mg2(SO4)3, space group P213) structural types. The structure of KPbMgTi(PO4)3 was refined by full-profile analysis (space group P213, Z = 4, a = 9.8540(3) Å, V = 956.83(4) Å3). The structure is formed by a framework of vertex-sharing MgO6 and TiO6 octahedra and PO4 tetrahedra. The K and Pb atoms fully occupy the extra-framework cavities and are coordinated to nine oxygen atoms. A variable-temperature X-ray diffraction study of KPbMgTi(PO4)3 showed that the compound expands isotropically and refer to medium-expansion class (linear thermal expansion coefficients α a = α b = α c = 8 × 10–6°C–1). The number of stretching and bending modes of the PO4 tetrahedron observed in the IR spectra is in agreement with that predicted by the factor group analysis of vibrations for space groups \(R\bar 3\) and P213. A structural transition from the cubic langbeinite to the rhombohedral kosnarite was found for CsSrMgZr(PO4)3. In the morphotropic series of ASrMgZr(PO4)3 (A = Na, K, Rb, Cs) the kosnarite–langbeinite transition occurs upon the Na → K replacement. The effect of the sizes and electronegativities of cations combined in AMMgE(PO4)3 on the change of the structural type was analyzed.  相似文献   

20.
Single crystals of (NH4)(CN3H6)[UO2(SeO3)2] (I) are synthesized and studied by X-ray diffraction analysis. The compound crystallizes in the triclinic crystal system with the unit cell parameters: a = 7.0051(2) Å, b = 9.4234(3) Å, c = 9.5408(3) Å, α = 88.727(1)°, β = 70.565(1)°, γ= 77.034(1)°, space group P 1, Z = 2, R = 0.0224. The main structural units of crystals I are the [UO2(SeO3)2]2? chains of the crystal-chemical group AB2B11 (A = UO 2 2+ , B2= SeO3 2?, B11= SeO3 2?) of the uranyl complexes. The uranium-containing complexes are joined into a three-dimensional framework by the ammonium and guanidinium ions and a system of hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号