首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We introduce modified Lagrange–Galerkin (MLG) methods of order one and two with respect to time to integrate convection–diffusion equations. As numerical tests show, the new methods are more efficient, but maintaining the same order of convergence, than the conventional Lagrange–Galerkin (LG) methods when they are used with either P 1 or P 2 finite elements. The error analysis reveals that: (1) when the problem is diffusion dominated the convergence of the modified LG methods is of the form O(h m+1 + h 2 + Δt q ), q = 1 or 2 and m being the degree of the polynomials of the finite elements; (2) when the problem is convection dominated and the time step Δt is large enough the convergence is of the form O(\frachm+1Dt+h2+Dtq){O(\frac{h^{m+1}}{\Delta t}+h^{2}+\Delta t^{q})} ; (3) as in case (2) but with Δt small, then the order of convergence is now O(h m  + h 2 + Δt q ); (4) when the problem is convection dominated the convergence is uniform with respect to the diffusion parameter ν (x, t), so that when ν → 0 and the forcing term is also equal to zero the error tends to that of the pure convection problem. Our error analysis shows that the conventional LG methods exhibit the same error behavior as the MLG methods but without the term h 2. Numerical experiments support these theoretical results.  相似文献   

2.
Let f be an isometric embedding of the dual polar space ${\Delta = DQ(2n, {\mathbb K})}Let f be an isometric embedding of the dual polar space D = DQ(2n, \mathbb K){\Delta = DQ(2n, {\mathbb K})} into D¢ = DQ(2n, \mathbb K¢){\Delta^\prime = DQ(2n, {\mathbb K}^\prime)}. Let P denote the point-set of Δ and let e¢: D¢? S¢ @ PG(2n - 1, \mathbb K¢){e^\prime : \Delta^\prime \rightarrow {\Sigma^\prime} \cong {\rm PG}(2^n - 1, {{\mathbb K}^\prime})} denote the spin-embedding of Δ′. We show that for every locally singular hyperplane H of Δ, there exists a unique locally singular hyperplane H′ of Δ′ such that f(H) = f(P) ?H¢{f(H) = f(P) \cap H^\prime}. We use this to show that there exists a subgeometry S @ PG(2n - 1, \mathbb K){\Sigma \cong {\rm PG}(2^n - 1, {\mathbb K})} of Σ′ such that: (i) e¢°f (x) ? S{e^\prime \circ f (x) \in \Sigma} for every point x of D; (ii) e : = e¢°f{\Delta; ({\rm ii})\,e := e^\prime \circ f} defines a full embedding of Δ into Σ, which is isomorphic to the spin-embedding of Δ.  相似文献   

3.
We prove that the F-jumping numbers of the test ideal t(X; D, \mathfrakat){\tau(X; \Delta, \mathfrak{a}^t)} are discrete and rational under the assumptions that X is a normal and F-finite scheme over a field of positive characteristic p, K X  + Δ is \mathbb Q{\mathbb {Q}}-Cartier of index not divisible p, and either X is essentially of finite type over a field or the sheaf of ideals \mathfraka{\mathfrak{a}} is locally principal. This is the largest generality for which discreteness and rationality are known for the jumping numbers of multiplier ideals in characteristic zero.  相似文献   

4.
The aim of this study is to prove global existence of classical solutions for systems of the form ${\frac{\partial u}{\partial t} -a \Delta u=-f(u,v)}The aim of this study is to prove global existence of classical solutions for systems of the form \frac?u?t -a Du=-f(u,v){\frac{\partial u}{\partial t} -a \Delta u=-f(u,v)} , \frac?v?t -b Dv=g(u,v){\frac{\partial v}{\partial t} -b \Delta v=g(u,v)} in (0, +∞) × Ω where Ω is an open bounded domain of class C 1 in \mathbbRn{\mathbb{R}^n}, a > 0, b > 0 and f, g are nonnegative continuously differentiable functions on [0, +∞) × [0, +∞) satisfying f (0, η) = 0, g(x,h) £ C j(x)eahb{g(\xi,\eta) \leq C \varphi(\xi)e^{\alpha {\eta^\beta}}} and g(ξ, η) ≤ ψ(η)f(ξ, η) for some constants C > 0, α > 0 and β ≥ 1 where j{\varphi} and ψ are any nonnegative continuously differentiable functions on [0, +∞) such that j(0)=0{\varphi(0)=0} and limh? +¥hb-1y(h) = l{ \lim_{\eta \rightarrow +\infty}\eta^{\beta -1}\psi(\eta)= \ell} where is a nonnegative constant. The asymptotic behavior of the global solutions as t goes to +∞ is also studied. For this purpose, we use the appropriate techniques which are based on semigroups, energy estimates and Lyapunov functional methods.  相似文献   

5.
It is shown that for any t, 0<t<∞, there is a Jordan arc Γ with endpoints 0 and 1 such that G\{1} í \mathbbD:={z:|z| < 1}\Gamma\setminus\{1\}\subseteq\mathbb{D}:=\{z:|z|<1\} and with the property that the analytic polynomials are dense in the Bergman space \mathbbAt(\mathbbD\G)\mathbb{A}^{t}(\mathbb{D}\setminus\Gamma) . It is also shown that one can go further in the Hardy space setting and find such a Γ that is in fact the graph of a continuous real-valued function on [0,1], where the polynomials are dense in Ht(\mathbbD\G)H^{t}(\mathbb{D}\setminus\Gamma) ; improving upon a result in an earlier paper.  相似文献   

6.
In this paper, we study the initial-boundary value problem of porous medium equation ρ(x)u t  = Δu m  + V(x)h(t)u p in a cone D = (0, ∞) × Ω, where V(x)  ~  |x|s, h(t)  ~  ts{V(x)\,{\sim}\, |x|^\sigma, h(t)\,{\sim}\, t^s}. Let ω 1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let l denote the positive root of l 2 + (n − 2)l = ω 1. We prove that if m < p £ 1+(m-1)(1+s)+\frac2(s+1)+sn+l{m < p \leq 1+(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}, then the problem has no global nonnegative solutions for any nonnegative u 0 unless u 0 = 0; if ${p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}${p >1 +(m-1)(1+s)+\frac{2(s+1)+\sigma}{n+l}}, then the problem has global solutions for some u 0 ≥ 0.  相似文献   

7.
We consider the existence of nontrivial solutions of the boundary-value problems for nonlinear fractional differential equations
*20c Da u(t) + l[ f( t,u(t) ) + q(t) ] = 0,    0 < t < 1, u(0) = 0,    u(1) = bu(h), \begin{array}{*{20}{c}} {{{\mathbf{D}}^\alpha }u(t) + {{\lambda }}\left[ {f\left( {t,u(t)} \right) + q(t)} \right] = 0,\quad 0 < t < 1,} \\ {u(0) = 0,\quad u(1) = \beta u(\eta ),} \\ \end{array}  相似文献   

8.
In this paper we consider the following 2D Boussinesq–Navier–Stokes systems
lll?t u + u ·?u + ?p = - n|D|a u + qe2       ?t q+u·?q = - k|D|b q               div u = 0{\begin{array}{lll}\partial_t u + u \cdot \nabla u + \nabla p = - \nu |D|^\alpha u + \theta e_2\\ \quad\quad \partial_t \theta+u\cdot\nabla \theta = - \kappa|D|^\beta \theta \\ \quad\quad\quad\quad\quad{\rm div} u = 0\end{array}}  相似文献   

9.
In this paper, we consider the following nonlinear fractional three-point boundary-value problem:
*20c D0 + a u(t) + f( t,u(t) ) = 0,    0 < t < 1, u(0) = u¢(0) = 0,    u¢(1) = ò0h u(s)\textds, \begin{array}{*{20}{c}} {D_{0 + }^\alpha u(t) + f\left( {t,u(t)} \right) = 0,\,\,\,\,0 < t < 1,} \\ {u(0) = u'(0) = 0,\,\,\,\,u'(1) = \int\limits_0^\eta {u(s){\text{d}}s,} } \\ \end{array}  相似文献   

10.
The large time behavior of non-negative solutions to the reaction–diffusion equation ?t u=-(-D)a/2u - up{\partial_t u=-(-\Delta)^{\alpha/2}u - u^p}, ${(\alpha\in(0,2], \;p > 1)}${(\alpha\in(0,2], \;p > 1)} posed on \mathbbRN{\mathbb{R}^N} and supplemented with an integrable initial condition is studied. We show that the anomalous diffusion term determines the large time asymptotics for p > 1 + α/N, while nonlinear effects win if p ≤ 1 + α/N.  相似文献   

11.
For a convex planar domain D \cal {D} , with smooth boundary of finite nonzero curvature, we consider the number of lattice points in the linearly dilated domain t D t \cal {D} . In particular the lattice point discrepancy PD(t) P_{\cal {D}}(t) (number of lattice points minus area), is investigated in mean-square over short intervals. We establish an asymptotic formula for¶¶ òT - LT + L(PD(t))2dt \int\limits_{T - \Lambda}^{T + \Lambda}(P_{\cal {D}}(t))^2\textrm{d}t ,¶¶ for any L = L(T) \Lambda = \Lambda(T) growing faster than logT.  相似文献   

12.
We present expansions of real numbers in alternating s-adic series (1 < sN), in particular, s-adic Ostrogradskii series of the first and second kind. We study the “geometry” of this representation of numbers and solve metric and probability problems, including the problem of structure and metric-topological and fractal properties of the distribution of the random variable
x = \frac1st1 - 1 + ?k = 2 \frac( - 1 )k - 1st1 + t2 + ... + tk - 1, {\xi } = \frac{1}{s^{{\tau_1} - 1}} + \sum\limits_{k = 2}^\infty {\frac{{\left( { - 1} \right)}^{k - 1}}{s^{{\tau_1} + {\tau_2} + ... + {\tau_k} - 1}},}  相似文献   

13.
Consider a family of smooth immersions F(·,t) : Mn? \mathbbRn+1{F(\cdot,t)\,:\,{M^n\to \mathbb{R}^{n+1}}} of closed hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} moving by the mean curvature flow \frac?F(p,t)?t = -H(p,t)·n(p,t){\frac{\partial F(p,t)}{\partial t} = -H(p,t)\cdot \nu(p,t)}, for t ? [0,T){t\in [0,T)}. We show that at the first singular time of the mean curvature flow, certain subcritical quantities concerning the second fundamental form, for example ò0tòMs\frac|A|n + 2 log (2 + |A|) dmds,{\int_{0}^{t}\int_{M_{s}}\frac{{\vert{\it A}\vert}^{n + 2}}{ log (2 + {\vert{\it A}\vert})}} d\mu ds, blow up. Our result is a log improvement of recent results of Le-Sesum, Xu-Ye-Zhao where the scaling invariant quantities were considered.  相似文献   

14.
In this article, we study geometric aspects of the space of arcs parameterized by unit speed in the L 2 metric. Physically, this corresponds to the motion of a whip, and it also arises in studying shape recognition. The geodesic equation is the nonlinear, nonlocal wave equation η tt = ∂ s (σ η s ), with \lvert hs\rvert o 1{\lvert \eta_{s}\rvert\equiv 1} and σ given by sss- \lvert hss\rvert2 s = -\lvert hst\rvert2{\sigma_{ss}- \lvert \eta_{ss}\rvert^2 \sigma = -\lvert \eta_{st}\rvert^2}, with boundary conditions σ(t, 1) = σ(t, −1) = 0 and η(t, 0) = 0. We prove that the space of arcs is a submanifold of the space of all curves, that the orthogonal projection exists but is not smooth, and as a consequence we get a Riemannian exponential map that is continuous and even differentiable but not C 1. This is related to the fact that the curvature is positive but unbounded above, so that there are conjugate points at arbitrarily short times along any geodesic.  相似文献   

15.
We study the solvability of the minimization problem
minh ? Ka ò0T a(t)[ f( |h¢(t)| ) + g( h(t) ) ]  dt,\mathop {\min }\limits_{\eta \in \mathcal{K}_\alpha } \int_0^T {\alpha (t)\left[ {f\left( {|\eta '(t)|} \right) + g\left( {\eta (t)} \right)} \right]} \,dt,  相似文献   

16.
In this paper, we consider the critical quasilinear Schr?dinger equations of the form
-e2Du+V(x)u-e2[D(u2)]u=|u|2(2*)-2u+g(u),    x ? \mathbbRN, -\varepsilon^2\Delta u+V(x)u-\varepsilon^2[\Delta(u^2)]u=|u|^{2(2^*)-2}u+g(u),\quad x\in \mathbb{R}^N,  相似文献   

17.
For every positive integer n, consider the linear operator U n on polynomials of degree at most d with integer coefficients defined as follows: if we write ${\frac{h(t)}{(1 - t)^{d + 1}}=\sum_{m \geq 0} g(m) \, t^{m}}For every positive integer n, consider the linear operator U n on polynomials of degree at most d with integer coefficients defined as follows: if we write \frach(t)(1 - t)d + 1=?m 3 0 g(m)  tm{\frac{h(t)}{(1 - t)^{d + 1}}=\sum_{m \geq 0} g(m) \, t^{m}} , for some polynomial g(m) with rational coefficients, then \fracUnh(t)(1- t)d+1 = ?m 3 0g(nm)  tm{\frac{{\rm{U}}_{n}h(t)}{(1- t)^{d+1}} = \sum_{m \geq 0}g(nm) \, t^{m}} . We show that there exists a positive integer n d , depending only on d, such that if h(t) is a polynomial of degree at most d with nonnegative integer coefficients and h(0) = 1, then for nn d , U n h(t) has simple, real, negative roots and positive, strictly log concave and strictly unimodal coefficients. Applications are given to Ehrhart δ-polynomials and unimodular triangulations of dilations of lattice polytopes, as well as Hilbert series of Veronese subrings of Cohen–Macauley graded rings.  相似文献   

18.
In this paper we study the boundary limit properties of harmonic functions on ℝ+×K, the solutions u(t,x) to the Poisson equation
\frac?2 u?t2 + Du = 0,\frac{\partial^2 u}{\partial t^2} + \Delta u = 0,  相似文献   

19.
We establish an almost sure scaling limit theorem for super-Brownian motion on ℝ d associated with the semi-linear equation ut=\frac12Du+bu-au2u_{t}=\frac{1}{2}\Delta u+\beta u-\alpha u^{2} , where α and β are positive constants. In this case, the spectral theoretical assumptions required in Chen et al. (J. Funct. Anal. 254:1988–2019, 2008) are not satisfied. An example is given to show that the main results also hold for some sub-domains in ℝ d .  相似文献   

20.
Let W í \Bbb C\Omega \subseteq {\Bbb C} be a simply connected domain in \Bbb C{\Bbb C} , such that {¥} è[ \Bbb C \[`(W)]]\{\infty\} \cup [ {\Bbb C} \setminus \bar{\Omega}] is connected. If g is holomorphic in Ω and every derivative of g extends continuously on [`(W)]\bar{\Omega} , then we write gA (Ω). For gA (Ω) and z ? [`(W)]\zeta \in \bar{\Omega} we denote SN (g,z)(z) = ?Nl=0\fracg(l) (z)l ! (z-z)lS_N (g,\zeta )(z)= \sum^{N}_{l=0}\frac{g^{(l)} (\zeta )}{l !} (z-\zeta )^l . We prove the existence of a function fA(Ω), such that the following hold:
i)  There exists a strictly increasing sequence μn ∈ {0, 1, 2, …}, n = 1, 2, …, such that, for every pair of compact sets Γ, Δ ⊂ [`(W)]\bar{\Omega} and every l ∈ {0, 1, 2, …} we have supz ? G supw ? D \frac?l?wl Smnf,z) (w)-f(l)(w) ? 0,    as n ? + ¥    and\sup_{\zeta \in \Gamma} \sup_{w \in \Delta} \frac{\partial^l}{\partial w^l} S_{\mu_ n} (\,f,\zeta) (w)-f^{(l)}(w) \rightarrow 0, \hskip 7.8pt {\rm as}\,n \rightarrow + \infty \quad {\rm and}
ii)  For every compact set K ì \Bbb CK \subset {\Bbb C} with K?[`(W)] = ?K\cap \bar{\Omega} =\emptyset and Kc connected and every function h: K? \Bbb Ch: K\rightarrow {\Bbb C} continuous on K and holomorphic in K0, there exists a subsequence { m¢n }n=1\{ \mu^\prime _n \}^{\infty}_{n=1} of {mn }n=1\{\mu_n \}^{\infty}_{n=1} , such that, for every compact set L ì [`(W)]L \subset \bar{\Omega} we have supz ? L supz ? K Sm¢nf,z)(z)-h(z) ? 0,    as  n? + ¥.\sup_{\zeta \in L} \sup_{z\in K} S_{\mu^\prime _n} (\,f,\zeta )(z)-h(z) \rightarrow 0, \hskip 7.8pt {\rm as} \, n\rightarrow + \infty .
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号