首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on measurements of the current-voltage characteristics of ultrasmall Josephson junctions. The junctions were made of either Al or Pb alloy, and the leads connecting the junctions to the outside world were high resistance thin film microstrips fabricated on the chip very close to the junction. The high frequency impedance of these leads was sufficiently large to enable the observation in a single Josephson junction of the Coulomb blockade of Cooper pair tunneling, as well as evidence for the time correlation of Cooper pair tunneling (Bloch Oscillations).  相似文献   

2.
We have operated a Cooper pair pump, a linear array of superconducting tunnel junctions in which single Cooper pairs are moved under the influence of ac signals applied to two gate electrodes. The pump is based on the Coulomb blockade of charge tunneling. Because of the small junction capacitance precisely one Cooper pair is transferred per ac cycle. The current-voltage characteristics of this device show current plateaus close to 2ef, wheref is the frequency of the ac voltages. Deviations are explained in terms of Zener tunneling, Cooper pair co-tunneling, and sporadic quasiparticle tunneling.  相似文献   

3.
A single-Cooper-pair transistor (SCPT) is coupled capacitively to a voltage biased Josephson junction, used as a high-frequency generator. Thanks to the high energy of photons generated by the Josephson junction, transitions between energy levels, not limited to the first two levels, were induced and the effect of this irradiation on the dc Josephson current of the SCPT was measured. The phase and gate bias dependence of energy levels of the SCPT at high energy is probed. Because the energies of photons can be higher than the superconducting gap we can induce not only transfer of Cooper pairs but also transfer of quasiparticles through the island of the SCPT, thus controlling the poisoning of the SCPT. This can both decrease and increase the average Josephson energy of the SCPT: its supercurrent is then controlled by high-frequency irradiation.  相似文献   

4.
In the classical Josephson effect the phase difference across the junction is well defined, and the supercurrent is reduced only weakly by phase diffusion. For mesoscopic junctions with small capacitance the phase undergoes large quantum fluctuations, and the current is also decreased by Coulomb blockade effects. We discuss the behavior of the current–voltage characteristics in a large range of parameters comprising the phase diffusion regime with coherent Josephson current as well as the supercurrent peak due to incoherent Cooper pair tunneling in the Coulomb blockade regime.  相似文献   

5.
The tunneling of single electrons in small capacitance tunnel junctions is influenced by charging effects and by the fluctuations of the elecromagnetic environment. We study the effect of an external circuit with arbitrary impedance on the tunneling of quasiparticles and Cooper pairs in voltage driven Josephson junctions. We present results at finite temperatures and also consider an acdriven system.  相似文献   

6.
We explore the photonic (bright) side of the dynamical Coulomb blockade (DCB) by measuring the radiation emitted by a dc voltage-biased Josephson junction embedded in a microwave resonator. In this regime Cooper pair tunneling is inelastic and associated with the transfer of an energy 2eV into the resonator modes. We have measured simultaneously the Cooper pair current and the photon emission rate at the resonance frequency of the resonator. Our results show two regimes, in which each tunneling Cooper pair emits either one or two photons into the resonator. The spectral properties of the emitted radiation are accounted for by an extension to DCB theory.  相似文献   

7.
Small capacitance tunnel junctions show single electron effects and, in the superconducting state, the coherent tunneling of Cooper pairs. We study these effects in a system of two Josephson junctions, driven by a voltage source with a finite impedance. Novel features show up in theI?V characteristics, in particular pronounced structures at subgap voltages. These are due to Cooper pair tunneling, combined with tunneling of quasiparticles or with excitation of the electromagnetic environment.  相似文献   

8.
In this paper, we investigate the dynamics of coded information in a single Cooper pair interacting with a single Cavity mode. The effect of the relative ratio of Josephson junction capacity and the gate capacities on the purity, coherent vectors and the entropy of the travelling Cooper pair are investigated. The exchange information between the environment and the Cooper pair is quantified for different values of the Cooper qubit and environment parameters.  相似文献   

9.
The dynamics of Cooper pair tunneling under Coulomb blockade in small-size Josephson junctions is studied in terms of the resistive model. A relationship between the delay time and temperature fluctuations of the Coulomb blockade edge and the rate of rise of the voltage across the junction is derived.  相似文献   

10.
Cooper pair tunneling in voltage-biased superconducting C-SET structure is discussed with emphasis on the electromagnetic environment effect based on the self-consistent microscopic theory of Coulomb blockade in C-SET. It is shown that coherent Cooper pair tunneling survives only in the low impedance limit where charge fluctuation is large, while incoherent Cooper pair tunneling survives in both low- and high-impedance limits.  相似文献   

11.
We observed current-voltage characteristics of superconducting single charge transistors with on-chip resistors of R approximately R(Q)=h/4e(2) approximately 6.45 kOmega, which are explained in terms of Cooper pair cotunneling. Both the effective strength of Josephson coupling and the cotunneling current are modulated by the gate-induced charge on the transistor island. For increasing values of the resistance R we found the Cooper pair current at small transport voltages to be dramatically suppressed.  相似文献   

12.
Transportation of Cooper pairs by a movable single Cooper-pair box placed between two remote superconductors is shown to establish coherent coupling between them. This coupling is due to entanglement of the movable box with the leads and is manifested in the suppression of quantum fluctuations of the relative phase of the order parameters of the leads. It can be probed by attaching a high resistance Josephson junction between the leads and measuring the current through this junction. The current is suppressed with increasing temperature.  相似文献   

13.
We study quantum dynamics of and phase transitions in a Josephson junction between two planar d-wave superconductors where the processes of both quasiparticle and Cooper pair tunneling give rise to nonlocal dissipative terms in the effective action. By combining a perturbative weak coupling analysis in the charge representation with a variational approach in the phase representation at strong coupling, we ascertain a layout of the junction's phase diagram and discuss the corresponding behaviors.  相似文献   

14.
In a device with a superconductor coupled to two parallel quantum dots (QDs) the electrical tunability of the QD levels can be used to exploit nonclassical current correlations due to the splitting of Cooper pairs. We experimentally investigate the effect of a finite potential difference across one quantum dot on the conductance through the other completely grounded QD in a Cooper pair splitter fabricated on an InAs nanowire. We demonstrate that the nonlocal electrical transport through the device can be tuned by electrical means and that the energy dependence of the effective density of states in the QDs is relevant for the rates of Cooper pair splitting (CPS) and elastic cotunneling. Such experimental tools are necessary to understand and develop CPS-based sources of entangled electrons in solid-state devices.  相似文献   

15.
We study intrinsic noise of current in a superconducting single-electron transistor, taking into account both coherence effects and Coulomb interaction near a Cooper pair resonance. Because of this interplay, the statistics of tunneling events deviates from the Poisson distribution and, more important, it shows even-odd asymmetry in the transmitted charge. The zero-frequency noise is suppressed significantly when the quasiparticle tunneling rates are comparable to the coherent oscillation frequency of Cooper pairs.  相似文献   

16.
We propose that with ultracold Fermi gases one can realize a spin-asymmetric Josephson effect in which the two spin components of a Cooper pair are driven asymmetrically--corresponding to driving a Josephson junction of two superconductors with different voltages V(↑) and V(↓) for spin up and down electrons, respectively. We predict that the spin up and down components oscillate at the same frequency but with different amplitudes. Furthermore our results reveal that the standard interpretation of the Josephson supercurrent in terms of coherent bosonic pair tunneling is insufficient. We provide an intuitive interpretation of the Josephson supercurrent as interference in Rabi oscillations of pairs and single particles, the latter causing the asymmetry.  相似文献   

17.
We analyze a controllable generation of maximally entangled mixed states of a circuit containing two-coupled superconducting charge qubits. Each qubit is based on a Cooper pair box connected to a reservoir electrode through a Josephson junction. Illustrative variational calculations were performed to demonstrate the effect on the two-qubits entanglement. At sufficiently deviation between the Josephson energies of the qubits and/or strong coupling regime, maximally entangled mixed states at certain instances of time is synthesized. We show that entanglement has an interesting subsequent time evolution, including the sudden death effect. This enables us to completely characterize the phenomenon of entanglement sharing in the coupling of two superconducting charge qubits, a system of both theoretical and experimental interest.  相似文献   

18.
We study a readout scheme of a superconducting flux qubit state with a Cooper pair box as a transmon. The qubit states consist of the superpositions of two degenerate states where the charge and phase degrees of freedom are entangled. Owing to the robustness of the transmon against external fluctuations, our readout scheme enables the quantum non-demolition and single-shot measurement of flux qubit states. The qubit state readout can be performed by using the nonlinear Josephson amplifiers after a π/2 rotation driven by an ac electric field.  相似文献   

19.
The thermal and the quantum dissociation of a single vortex-antivortex (VAV) pair in an annular Josephson junction is experimentally observed and theoretically analyzed. In our experiments, the VAV pair is confined in a pinning potential controlled by external magnetic field and bias current. The dissociation of the pinned VAV pair manifests itself in a switching of the Josephson junction from the superconducting to the resistive state. The observed temperature and field dependence of the switching current distribution is in agreement with the analysis. The crossover from the thermal to the macroscopic quantum tunneling mechanism of dissociation occurs at a temperature of about 100 mK. We also predict the specific magnetic field dependence of the oscillatory energy levels of the pinned VAV state.  相似文献   

20.
We study a superconducting single-charge transistor, where the coherence of Cooper pair tunneling is destroyed by the coupling to a tunable dissipative environment. Sequential tunneling and cotunneling processes are analyzed to construct the shape of the conductance peaks and their dependence on the dissipation and temperature. Unexpected features are found due to a crossover between two distinct regimes, one "environment assisted" the other "environment dominated." Several of the predictions have been confirmed by recent experiments. The model and results apply also to the dynamics of Josephson junction quantum bits on a conducting ground plane, thus explaining the influence of dissipation on the coherence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号