首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this Letter an alternative mechanism is proposed for current-induced antisymmetric lateral edge spin accumulations in thin strips of ballistic two-dimensional electron gases with intrinsic spin-orbit coupling. In this mechanism, the occurrence of current-induced antisymmetric lateral edge spin accumulations in a semiconductor strip is not due to a transverse spin current but originates from the combined action of the spin-orbit coupling, the boundary confinement on both lateral edges of the strip, and the time-reversal symmetry-breaking caused by the longitudinal charge current circulating through the strip. The results obtained in this Letter indicate that, the occurrence of current-induced antisymmetric lateral edge spin accumulations in a thin strip of a spin-orbit coupled two-dimensional electronic system does not need to be associated necessarily with a transverse spin current in principle.  相似文献   

2.
We demonstrate that a transverse spin current can be generated simply by diffraction through a single slit in the spin-orbit coupling system of the two-dimensional electron gas. In the regime of spin-orbit coupling ~10(-13) eV·m, an out-of-plane component of the electron spin of up to 0.42? can be generated. Based on this effect, a novel device consisting of a grating to distill spin is designed. Two first diffraction peaks of electron carry different spins, providing a nonmagnetic version of the Stern-Gerlach experiment. The direction of the spin current can be controlled by the gate voltage with low energy cost.  相似文献   

3.
The spin Hall effect depends crucially on the intrinsic spin-orbit coupling of the energy band. Because of the smaller spin-orbit coupling in silicon, the spin Hall effect is expected to be much reduced. We show that an electric field in p-doped silicon can induce a dissipationless orbital current in a fashion reminiscent of the spin Hall effect. The vertex correction from impurity scattering vanishes and the effect is robust against disorder. The orbital Hall effect leads to accumulation of local orbital momentum at the edge of the sample, and can be detected by the Kerr effect.  相似文献   

4.
We show that temporal shape modulations (pumping) of a quantum dot in the presence of spin-orbital coupling lead to a finite dc spin current. Depending on the strength of the spin-orbit coupling, the spin current is polarized perpendicular to the plane of the two-dimensional electron gas, or has an arbitrary direction subject to mesoscopic fluctuations. We analyze the statistics of the spin and charge currents in the adiabatic limit for the full crossover from weak to strong spin-orbit coupling.  相似文献   

5.
We study the effect of Rashba spin-orbit coupling on the Hofstadter spectrum of a two-dimensional tight-binding electron system in a perpendicular magnetic field. We obtain the generalized coupled Harper spin-dependent equations which include the Rashba spin-orbit interaction and solve for the energy spectrum and spin polarization. We investigate the effect of spin-orbit coupling on the fractal energy spectrum and the spin polarization for some characteristic states as a function of the magnetic flux α and the spin-orbit coupling parameter. We characterize the complexity of the fractal geometry of the spin-dependent Hofstadter butterfly with the correlation dimension and show that it grows quadratically with the amplitude of the spin-orbit coupling. We study some ground state properties and the spin polarization shows a fractal-like behavior as a function of α, which is demonstrated with the exponent close to unity of the decaying power spectrum of the spin polarization. Some degree of spin localization or distribution around +1 or -1, for small spin-orbit coupling, is found with the determination of the entropy function as a function of the spin-orbit coupling. The excited states show a more extended (uniform) distribution of spin states.  相似文献   

6.
We investigate the linear conductance of a stripe of spin-orbit interaction in a 2D electron gas; that is, a 2D region of length l\ell along the transport direction and infinite in the transverse one in which a spin-orbit interaction of Rashba type is present. Polarization in the contacts is described by means of Zeeman fields. Our model predicts two types of conductance oscillations: Ramsauer oscillations in the minority spin transmission, when both spins can propagate, and Fano oscillations when only one spin propagates. The latter are due to the spin-orbit coupling with quasibound states of the non propagating spin. In the case of polarized contacts in antiparallel configuration Fano-like oscillations of the conductance are still made possible by the spin orbit coupling, even though no spin component is bound by the contacts. To describe these behaviors we propose a simplified model based on an ansatz wave function. In general, we find that the contribution for vanishing transverse momentum dominates and defines the conductance oscillations. Regarding the oscillations with Rashba coupling intensity, our model confirms the spin transistor behavior, but only for high degrees of polarization. Including a position dependent effective mass yields additional oscillations due to the mass jumps at the interfaces.  相似文献   

7.
吕厚祥  石德政  谢征微 《物理学报》2013,62(20):208502-208502
在群速度概念的基础上, 研究了自旋极化电子隧穿通过铁磁体/半导体(绝缘体)/铁磁体异质结时, 渡越时间随两端铁磁层中磁矩夹角变化的关系. 研究结果表明: 当中间层为半导体层时, 由于半导体层中的Rashba自旋轨道耦合强度的影响, 自旋向上电子和自旋向下电子的渡越时间差会在两铁磁层相对磁矩夹角为π/2和3π/2附近出现一个极小值. 当中间层为绝缘体层时, 势垒高度的变化会导致不同取向的自旋极化电子渡越时间差的变化, 并当势垒高度超过一临界值时发生翻转. 关键词: 铁磁体/半导体(绝缘体)/铁磁体异质结 Rashba自旋轨道耦合强度 渡越时间 磁矩  相似文献   

8.
We describe a new effect in semiconductor spintronics that leads to dissipationless spin currents in paramagnetic spin-orbit coupled systems. We argue that in a high-mobility two-dimensional electron system with substantial Rashba spin-orbit coupling, a spin current that flows perpendicular to the charge current is intrinsic. In the usual case where both spin-orbit split bands are occupied, the intrinsic spin-Hall conductivity has a universal value for zero quasiparticle spectral broadening.  相似文献   

9.
We propose an all-electrical nanostructure where pure spin current is induced in the transverse voltage probes attached to a quantum-coherent ballistic one-dimensional ring when unpolarized charge current is injected through its longitudinal leads. Tuning of the Rashba spin-orbit coupling in a semiconductor heterostructure hosting the ring generates quasiperiodic oscillations of the predicted spin-Hall current due to spin-sensitive quantum-interference effects caused by the difference in the Aharonov-Casher phase accumulated by opposite spin states. Its amplitude is comparable to that of the spin-Hall current predicted for finite-size (simply connected) two-dimensional electron gases, while it gets reduced gradually in wide two-dimensional rings or due to spin-independent disorder.  相似文献   

10.
We study the spin edge states, induced by the combined effect of Bychkov-Rashba spinorbit and Zeeman interactions or of Dresselhaus spin-orbit and Zeeman interactions in a twodimensional electron system, exposed to a perpendicular quantizing magnetic field and restricted by a hard-wall confining potential. We derive an exact analytical formula for the dispersion relations of spin edge states and analyze their energy spectrum versus the momentum and the magnetic field. We calculate the average spin components and the average transverse position of electron. It is shown that by removing the spin degeneracy, spin-orbit interaction splits the spin edge states not only in the energy but also induces their spatial separation. Depending on the type of spin-orbit coupling and the principal quantum number, the Zeeman term in the combination with spin-orbit interaction increases or decreases essentially the splitting of bulk Landau levels while it has a weak influence on the spin edge states.  相似文献   

11.
《Current Applied Physics》2019,19(12):1362-1366
Based on a spin drift-diffusion model, we theoretically investigate the spin-orbit torque in ferromagnet/normal metal/insulator trilayers with considering the Rashba interfacial spin-orbit coupling at the normal metal/insulator interface. We find that the spin-orbit torque shows the opposite normal-metal-thickness dependences for the bulk spin-orbit coupling effect in the normal metal layer and for the interfacial spin-orbit coupling effect at the normal metal/insulator interface, offering a way to disentangle these two spin-orbit coupling effects. Moreover, we show that the conventional interpretation based on the bulk spin-orbit coupling effect overestimates the spin Hall angle and underestimates the spin diffusion length of the normal metal layer, when the interfacial contribution is non-negligible. Our result, a concise analytic expression of the spin-orbit torque considering both bulk and interface spin-orbit coupling effects, will be useful to design and interpret experiments on spin-orbit torque experiments in ferromagnet/normal metal/insulator trilayers.  相似文献   

12.
An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons, and Grioni [1] describing quantum states at the Bi/Si(111) interface with the giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis of the charge current and induced spin caused by a dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at a realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response for both the current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample, while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.  相似文献   

13.
A study on characteristics of electrons tunneling through semiconductor barrier is evaluated, in which we take into account the effects of Rashba spin-orbit interaction. Our numerical results show that Rashba spin-orbit effect originating from the inversion asymmetry can give rise to the spin polarization. The spin polarization does not increase linearly but shows obvious resonant features as the strength of Rashba spin-orbit coupling increases, and the amplitudes of spin polarization can reach the highest around the first resonant energy level. Furthermore, it is found that electrons with different spin orientations will spend quite different time through the same heterostructures. The difference of the dwell time between spin-up and spin-down electrons arise from the Rashba spin-orbit coupling. And it is also found that the dwell time will reach its maximum at the first resonant energy level. It can be concluded that, in the time domain, the tunneling processes of the spin-up and spin-down electrons can be separated by modulating the strength of Rashba spin-orbit coupling. Study results indicate that Rashba spin-orbit effect can cause a nature spin filter mechanism in the time domain.  相似文献   

14.
As a relativistic quantum mechanical effect, it is shown that the electron field exerts a transverse force on an electron spin 1/2 only if the electron is moving. The spin force, analogue to the Lorentz for an electron charge in a magnetic field, is perpendicular to the electric field and the spin current whose spin polarization is projected along the electric field. This spin-dependent force can be used to understand the Zitterbewegung of the electron wave packet with spin-orbit coupling and is relevant to the generation of the charge Hall effect driven by the spin current in semiconductors.  相似文献   

15.
16.
The prediction of intrinsic spin Hall currents by Murakami et al. and Sinova et al. raised many questions about methods of detection and the effect of disorder. We focus on a contact between a Rashba-type spin-orbit coupled region with a normal two-dimensional electron gas and show that the spin Hall currents, though vanishing in the bulk of the sample, can be recovered from the edges. We also show that the current-induced spin accumulation in the spin-orbit coupled system diffuses into the normal region and contributes to the spin current in the leads.  相似文献   

17.
We demonstrate that the flow of a longitudinal unpolarized current through a ballistic two-dimensional electron gas with Rashba spin-orbit coupling will induce a nonequilibrium spin accumulation which has opposite signs for the two lateral edges and is, therefore, the principal observable signature of the spin Hall effect in two-probe semiconductor nanostructures. The magnitude of its out-of-plane component is gradually diminished by static disorder, while it can be enhanced by an in-plane transverse magnetic field. Moreover, our prediction of the longitudinal component of the spin Hall accumulation, which is insensitive to the reversal of the bias voltage, offers direct evidence to differentiate experimentally between the extrinsic, intrinsic, and mesoscopic spin Hall mechanisms.  相似文献   

18.
Pumping of charge current by spin dynamics in the presence of the Rashba spin-orbit interaction is theoretically studied. Considering a disordered electron, the exchange coupling and spin-orbit interactions are treated perturbatively. It is found that the dominant current induced by spin dynamics is interpreted as a consequence of the conversion from spin current via the inverse spin Hall effect. We also find that the current has an additional component from a fictitious conservative field. The results are applied to the case of a moving domain wall.  相似文献   

19.
We investigate the ground state properties of a noncentrosymmetric superconductor near a surface. We determine the spectrum of Andreev bound states due to surface-induced mixing of bands with opposite spin helicities for a Rashba-type spin-orbit coupling. We find that the order parameter suppression qualitatively changes the bound state spectrum. The spin structure of Andreev states leads to a spin supercurrent along the interface, which is strongly enhanced compared to the normal state spin current. Particle and hole coherence amplitudes show Faraday-like rotations of the spin along quasiparticle trajectories.  相似文献   

20.
We predict the possibility to generate a finite stationary spin current by applying an unbiased ac driving to a quasi-one-dimensional asymmetric periodic structure with Rashba spin-orbit interaction and strong dissipation. We show that under a finite coupling strength between the orbital degrees of freedom the electron dynamics at low temperatures exhibits a pure spin ratchet behavior, i.e., a finite spin current and the absence of charge transport in spatially asymmetric structures. It is also found that the equilibrium spin currents are not destroyed by the presence of strong dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号