首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Kinetically constrained models (KCMs) have been widely used to study and understand the origin of glassy dynamics. These models show an ergodic-nonergodic first-order phase transition between phases of distinct dynamical “activity”. We introduce driven variants of two popular KCMs, the FA model and the (2)-TLG, as models for driven supercooled liquids. By classifying trajectories through their entropy production we prove that driven KCMs display an analogous first-order space-time transition between dynamical phases of finite and vanishing entropy production. We discuss how trajectories with rare values of entropy production can be realized as typical trajectories of a mapped system with modified forces.  相似文献   

2.
We determine the finite size corrections to the large deviation function of the activity in a kinetically constrained model (the Fredrickson-Andersen model in one dimension), in the regime of dynamical phase coexistence. Numerical results agree with an effective model where the boundary between active and inactive regions is described by a Brownian interface.  相似文献   

3.
We review the use of kinetically constrained models (KCMs) for the study of dynamics in glassy systems. The characteristic feature of KCMs is that they have trivial, often non-interacting, equilibrium behaviour but interesting slow dynamics due to restrictions on the allowed transitions between configurations. The basic question which KCMs ask is therefore how much glassy physics can be understood without an underlying 'equilibrium glass transition'. After a brief review of glassy phenomenology, we describe the main model classes, which include spin-facilitated (Ising) models, constrained lattice gases, models inspired by cellular structures such as soap froths, models obtained via mappings from interacting systems without constraints, and finally related models such as urn, oscillator, tiling and needle models. We then describe the broad range of techniques that have been applied to KCMs, including exact solutions, adiabatic approximations, projection and mode-coupling techniques, diagrammatic approaches and mappings to quantum systems or effective models. Finally, we give a survey of the known results for the dynamics of KCMs both in and out of equilibrium, including topics such as relaxation time divergences and dynamical transitions, nonlinear relaxation, ageing and effective temperatures, cooperativity and dynamical heterogeneities, and finally non-equilibrium stationary states generated by external driving. We conclude with a discussion of open questions and possibilities for future work.  相似文献   

4.
In glassy materials, aging proceeds at large times via thermal activation. We show that this can lead to negative dynamical response functions and novel and well-defined violations of the fluctuation-dissipation theorem, in particular, negative fluctuation-dissipation ratios. Our analysis is based on detailed theoretical and numerical results for the activated aging regime of simple kinetically constrained models. The results are relevant to a variety of physical situations, such as aging in glass formers, thermally activated domain growth, and granular compaction.  相似文献   

5.
We analyze the tagged particle diffusion for kinetically constrained models for glassy systems. We present a method, focusing on the Kob–Andersen model as an example, which allows to prove lower and upper bounds for the self-diffusion coefficient D S. This method leads to the exact density dependence of D S, at high density, for models with finite defects and to prove diffusivity, D S > 0, at any finite density for highly cooperative models. A more general outcome is that under very general assumptions one can exclude that a dynamical transition, like the one predicted by the Mode-Coupling-Theory of glasses, takes place at a finite temperature/chemical potential for systems of interacting particle on a lattice.  相似文献   

6.
We investigate the relaxation process and the dynamical heterogeneities of the kinetically constrained Kob-Andersen lattice glass model and show that these are characterized by different time scales. The dynamics is well described within the diffusing defect paradigm, which suggests that we relate the relaxation process to a reverse-percolation transition. This allows for a geometrical interpretation of the relaxation process and of the different time scales.  相似文献   

7.
We propose that the dynamics of supercooled liquids and the formation of glasses can be understood from the existence of a zero-temperature dynamical critical point. To support our proposal, we derive a dynamic field theory for a generic kinetically constrained model, which we expect to describe the dynamics of a supercooled liquid. We study this field theory using the renormalization group (RG). Its long time behavior is dominated by a zero-temperature critical point, which for d>2 belongs to the directed percolation universality class. Molecular dynamics simulations seem to confirm the existence of dynamic scaling behavior consistent with the RG predictions.  相似文献   

8.
宋端*  刘畅  郭永新 《物理学报》2013,62(9):94501-094501
本文从高阶非完整系统嵌入变分恒等式的积分变分原理出发, 根据三种不等价条件变分的选取, 得到了高阶非完整系统的三类不等价动力学模型, 即高阶非完整约束系统的vakonomic方程、Lagrange-d'Alembert 方程和一种新的动力学方程. 当高阶非完整约束方程退化为一阶非完整约束时, 利用此理论可以得到一般非完整系统的vakonomic模型、Chetaev模型和一种新的动力学模型. 最后借助于应用实例验证了结论的正确性. 关键词: 高阶非完整约束 变分恒等式 条件变分 vakonomic动力学  相似文献   

9.
We study bootstrap percolation (BP) on hyperbolic lattices obtained by regular tilings of the hyperbolic plane. Our work is motivated by the connection between the BP transition and the dynamical transition of kinetically constrained models, which are in turn relevant for the study of glass and jamming transitions. We show that for generic tilings there exists a BP transition at a nontrivial critical density, 0<ρ c <1. Thus, despite the presence of loops on all length scales in hyperbolic lattices, the behavior is very different from that on Euclidean lattices where the critical density is either zero or one. Furthermore, we show that the transition has a mixed character since it is discontinuous but characterized by a diverging correlation length, similarly to what happens on Bethe lattices and random graphs of constant connectivity.  相似文献   

10.
We present a detailed physical analysis of the dynamical glass-jamming transition which occurs for the so called Knight models recently introduced and analyzed in a joint work with D.S. Fisher (Toninelli et al., Phys. Rev. Lett. 96, 035702, 2006). Furthermore, we review some of our previous works on Kinetically Constrained Models. The Knight models correspond to a new class of kinetically constrained models which provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to the underlying percolation transition of particles which are mutually blocked by the constraints. This jamming percolation has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law when ρ ↗ ρ c . These properties give rise for Knight models to an ergodicity breaking transition at ρ c : at and above ρ c a finite fraction of the system is frozen. In turn, this finite jump in the density of frozen sites leads to a two step relaxation for dynamic correlations in the unjammed phase, analogous to that of glass forming liquids. Also, due to the faster than power law divergence of the dynamical correlation length, relaxation times diverge in a way similar to the Vogel-Fulcher law.  相似文献   

11.
We present a new phenomenological approach to nucleation, based on the combination of the "extended modified liquid drop" model and dynamical nucleation theory. The new model proposes a new cluster definition, which properly includes the effect of fluctuations, and it is consistent both thermodynamically and kinetically. The model is able to predict successfully the free energy of formation of the critical nucleus, using only macroscopic thermodynamic properties. It also accounts for the spinodal and provides excellent agreement with the result of recent simulations.  相似文献   

12.
A class of kinetically constrained models with reflection symmetry is proposed as an extension of the Fredrickson–Andersen model. It is proved that the proposed model on the square lattice exhibits a freezing transition at a non-trivial density. It is conjectured by numerical experiments that the known mechanism of the singular behaviors near the freezing transition in a previously studied model (spiral model) is not responsible for that in the proposed model.  相似文献   

13.
We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and time scales. The models we investigate have constraints similar to that of the knights model, introduced by Toninelli, Biroli, and Fisher (TBF), but differing neighbor relations. We find that such knights-like models, otherwise known as models of jamming percolation, need a “No Parallel Crossing” rule for the TBF proof of a glassy transition to be valid. Furthermore, most knights-like models fail a “No Perpendicular Crossing” requirement, and thus need modification to be made rigorous. We also show how the “No Parallel Crossing” requirement can be used to evaluate the provable glassiness of other correlated percolation models, by looking at models with more stable directions than the knights model. Finally, we show that the TBF proof does not generalize in any straightforward fashion for three-dimensional versions of the knights-like models.  相似文献   

14.
We discuss a generic mechanism for shear thickening analogous to entropy-driven phase reentrance. We implement it in the context of nonrelaxational mean-field glassy systems: although very simple, the microscopic models we study present a dynamical phase diagram with second- and first-order stirring-induced jamming transitions leading to intermittency, metastability, and phase coexistence as seen in some experiments. The jammed state is fragile with respect to change in the stirring direction. Our approach provides a direct derivation of a mode-coupling theory of shear thickening.  相似文献   

15.
The mass-imbalanced Hubbard model represents a continuous evolution from the Hubbard to the Falicov-Kimball model. We employ dynamical mean field theory and study the paramagnetic metal-insulator transition, which has a very different nature for the two limiting models. Our results indicate that the metal-insulator transition rather resembles that of the Hubbard model as soon as a tiny hopping between the more localized fermions is switched on. At low temperatures we observe a first-order metal-insulator transition and a three peak structure. The width of the central peak is the same for the more and less mobile fermions when approaching the phase transition, which agrees with our expectation of a common Kondo temperature and phase transition for the two species.  相似文献   

16.
We present a general, rigorous theory of Lee-Yang zeros for models with first-order phase transitions that admit convergent contour expansions. We derive formulas for the positions and the density of the zeros. In particular, we show that, for models without symmetry, the curves on which the zeros lie are generically not circles, and can have topologically nontrivial features, such as bifurcation. Our results are illustrated in three models in a complex field: the low-temperature Ising and Blume-Capel models, and the q-state Potts model for large q.  相似文献   

17.
We consider two cases of kinetically constrained models, namely East and FA-1f models. The object of interest of our work is the activity A(t){\mathcal {A}(t)} defined as the total number of configuration changes in the interval [0, t] for the dynamics on a finite domain. It has been shown in Garrahan et al. (J Phys A 42:075007, 2009; Phys Rev Lett 98:195702, 2007) that the large deviations of the activity exhibit a non-equilibrium phase transition in the thermodynamic limit and that reducing the activity is more likely than increasing it due to a blocking mechanism induced by the constraints. In this paper, we study the finite size effects around this first order phase transition and analyze the phase coexistence between the active and inactive dynamical phases in dimension 1. In higher dimensions, we show that the finite size effects are determined by the dimension and the choice of the boundary conditions.  相似文献   

18.
We present a new method to derive an infinite series of conserved local charges for the two-dimensional CPN σ-models. The generating relation for the conservation laws is a couple of first-order nonlinear differential equations. The method displays transparently the connection of the local charges with nonlocal dynamical charges of CPN models previously found.  相似文献   

19.
Leticia F. Cugliandolo 《Physica A》2010,389(20):4360-4373
These lecture notes give a very short introduction to coarsening phenomena and summarize some recent results in the field. They focus on three aspects: the super-universality hypothesis, the geometry of growing structures, and coarsening in the spiral kinetically constrained model.  相似文献   

20.
We consider a general class of statistical mechanical models of coherent structures in turbulence, which includes models of two-dimensional fluid motion, quasi-geostrophic flows, and dispersive waves. First, large deviation principles are proved for the canonical ensemble and the microcanonical ensemble. For each ensemble the set of equilibrium macrostates is defined as the set on which the corresponding rate function attains its minimum of 0. We then present complete equivalence and nonequivalence results at the level of equilibrium macrostates for the two ensembles. Microcanonical equilibrium macrostates are characterized as the solutions of a certain constrained minimization problem, while canonical equilibrium macrostates are characterized as the solutions of an unconstrained minimization problem in which the constraint in the first problem is replaced by a Lagrange multiplier. The analysis of equivalence and nonequivalence of ensembles reduces to the following question in global optimization. What are the relationships between the set of solutions of the constrained minimization problem that characterizes microcanonical equilibrium macrostates and the set of solutions of the unconstrained minimization problem that characterizes canonical equilibrium macrostates? In general terms, our main result is that a necessary and sufficient condition for equivalence of ensembles to hold at the level of equilibrium macrostates is that it holds at the level of thermodynamic functions, which is the case if and only if the microcanonical entropy is concave. The necessity of this condition is new and has the following striking formulation. If the microcanonical entropy is not concave at some value of its argument, then the ensembles are nonequivalent in the sense that the corresponding set of microcanonical equilibrium macrostates is disjoint from any set of canonical equilibrium macrostates. We point out a number of models of physical interest in which nonconcave microcanonical entropies arise. We also introduce a new class of ensembles called mixed ensembles, obtained by treating a subset of the dynamical invariants canonically and the complementary set microcanonically. Such ensembles arise naturally in applications where there are several independent dynamical invariants, including models of dispersive waves for the nonlinear Schrödinger equation. Complete equivalence and nonequivalence results are presented at the level of equilibrium macrostates for the pure canonical, the pure microcanonical, and the mixed ensembles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号