首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We present a new pulse sequence that yields two simultaneously detected types of long‐range correlation spectra. The one spectrum is to show all nJ(C,H) connectivities and the other is to show exclusively 2J(C,H) connectivities. The method is demonstrated by using strychnine as a test sample. A comparison with HMBC shows that the 2J(C,H)/nJ(C,H) experiment supplies a nJ(C,H) spectrum that is of equal standard with regard to sensitivity and spectral information. The additional 2J(C,H) spectrum allows the disentanglement of 2J(C,H) and nJ(C,H) signals (n > 2) in HMBC type spectra, which greatly simplifies signal assignment and structure elucidation in general. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Bands with primarily v (C=O) and v (C=O) character in the spectra of 4-hydroxycoumarin and its anion were identified by isotopic substitution with either 13C or deuterium. Two bands of each type were found for spectra of 4-hydroxycoumarin in solution in chloroform, dioxane, or dimethylsulfoxide, with v (C=O) at 1704–1733 cm?1 and ~ 1567 cm?1. Two bands, at 1618 and 1559 cm?1, are associated with v (C=C) in the spectrum of crystalline 4-hydroxycoumarin monohydrate, but only a single v (C=O) band at ~ 1655 cm?1 was observed. Anhydrous 4-hydroxycoumarin has v (C=O) bands at ~ 1700 cm?1 and a shoulder at ~ 1670 cm?1. The strong band at 1660 cm?1 in the spectrum of 4-hydroxycommarin anion in dimethylsulfoxide solution is due to a delocalized v (O = C = O) vibration, whereas the band at 1555 cm?1 has partial v (C=C) character and involves C(3) but not C(2), supporting a fully delocalized char structure for the anion. No evidence for the existence of the 2-hydroxychromone tautomer was found, except in the case of anhydrous 4-hydroxycoumarin in the solid state.  相似文献   

3.
The structure of an AgI‐mediated cytosine–cytosine base pair, C–AgI–C, was determined with NMR spectroscopy in solution. The observation of 1‐bond 15N‐109Ag J‐coupling (1J(15N,109Ag): 83 and 84 Hz) recorded within the C–AgI–C base pair evidenced the N3–AgI–N3 linkage in C–AgI–C. The triplet resonances of the N4 atoms in C–AgI–C demonstrated that each exocyclic N4 atom exists as an amino group (?NH2), and any isomerization and/or N4–AgI bonding can be excluded. The 3D structure of AgI–DNA complex determined with NOEs was classified as a B‐form conformation with a notable propeller twist of C–AgI–C (?18.3±3.0°). The 109Ag NMR chemical shift of C‐AgI‐C was recorded for cytidine/AgI complex (δ(109Ag): 442 ppm) to completed full NMR characterization of the metal linkage. The structural interpretation of NMR data with quantum mechanical calculations corroborated the structure of the C–AgI–C base pair.  相似文献   

4.
A series of (>90% isotopic purity) 13C-labeled aliphatic alcohols of the general structure C? C? C? 13C? OH were synthesized and studied by 13C n.m.r. to obtain all 13C? 13C couplings involving the labeled carbon. The 2J(CC) values were small (<0.5 Hz) and contrast with the large (up to 2.7 Hz) 2J(CC) values obtained in a previous study for 2-butanols. The 3J(CC) values, however, were strikingly similar in the two classes of compounds with respect both to magnitude and to conformational dependency. Thus, the effect of the hydroxyl substituent on 3J(CC) values is small.  相似文献   

5.
1J(13C?13C) nuclear spin–spin coupling constants in derivatives of acetylene have been measured from natural abundance 13C NMR spectra and in one case (triethylsilyllithiumacetylene) from the 13C NMR spectrum of a 13C-enriched sample. It has been found that the magnitude of J(C?C) depends on the electronegativity of the substituents at the triple bond. The equation 1J(13C?13C) = 43.38 Ex + 17.33 has been derived for one particular series of the compounds Alk3SiC?CX, where X denotes Li, R3Sn, R3Si, R3C, I, Br or Cl. The 1J(C?C) values found in this work cover a range from 56.8 Hz (in Et3SiC?Li) to 216.0 Hz (in PhC?CCI). However, the 1J(C?C) vs Ex equation combined with the Egli–von Philipsborn relationship allows the calculation of the coupling constants in Li2C2 (32 Hz) and in F2C2 (356 Hz). These are probably the lowest and the highest values, respectively, which can be attained for 1J(CC) across a triple bond. The unusually large changes of the 1J(C?C) values are explained in terms of substituent effects followed by a re-hybridization of the carbons involved in the triple bond. INDO FPT calculations performed for two series of acetylene derivatives, with substituents varied along the first row of the Periodic Table, corroborate the conclusions drawn from the experimental data.  相似文献   

6.
The 13C NMR spectra of pure exo-2-norbornyltrimethylstannane and a mixture of the exo- and endo-isomers have been recorded. 1H–13C polarization transfer spectra have been obtained and require the previously reported assignments for C-3 and C-4 in the exo-isomer to be reversed. The reported assignments for the endo-isomer are correct. The new assignment for C-4-exo [with J(119Sn,13C) vic=12 Hz, instead of the previously assigned J(vic)=23 Hz], has a very minor effect on the nature of the Karplus curve [for 3J(119Sn,13C)] generated previously.  相似文献   

7.
Tracer experiments on the transfer of carbon from culture solution to Daphnia magna through phytoplankton have been carried out using 13C and infrared absorption method. The purpose of this experiment is to investigate the experimental systems for the use of 13C in aquatic system. Daphnia magna was cultured in a 100 ml of solution containing phytoplankton and 20 mg of NaH13CO3 for 24 hours in the light and dark conditions (2000 lux, 14 hour light and 10 hours dark at 25 C). The concentration of 13C in Daphnia magna under light condition was about 2.0% (atom% excess), while in the dark condition 13C tracer was not detected. The concentration of 13C in phytoplankton under light condition was around 20%. It was suggested that 13C added as carbonate in the culture solution was photosynthetically assimilated by phytoplankton and then transferred to Daphnia magna. Using this system, the effect of UV-B exposure on the 13C uptake of Daphnia magna has been examined. The UV-B intensity was 95 mW/cm2 and exposure time was 15, 30, and 60 minutes. The concentration of 13C in Daphnia magna decreased with increasing exposure time. The Daphnia magna exposed to UV-B for 15 minutes intakes phytoplankton as much as control, while 30 minutes and 60 minutes exposures were lower than control. The lower concentrations of 13C observed in Daphnia magna were due to less intake of phytoplankton caused by the UV-B exposure.  相似文献   

8.
Single-pulse 13C NMR spectra and spin-lattice relaxation times T1(1H), detected indirectly via 13C carbons, and T1(13C) were measured at 31°C for virgin pelletized and annealed polylactic acid (PLA) samples using the magic-angle spinning technique. The structural relaxation resulting in more regular crystals with narrower conformation distribution and increase in the lamellae thickness and crystallinity brought about by annealing at 100°C was deduced from the narrowing of the 13C NMR lines and proton spin-lattice relaxation times T1(1H). The spin-lattice relaxation times T1(13C) related to the respective carbons of the α-polymorph of PLA are also discussed in the study.  相似文献   

9.
The stable carbon and nitrogen isotopic composition of urine and milk samples from cattle under different feeding regimes were analysed over a period of six months. The isotope ratios were measured with isotope ratio mass spectrometry (IRMS). The δ 13C values of milk and urine were dependent on different feeding regimes based on C3 or C4 plants. The δ 13C values are more negative under grass feeding than under maize feeding. The δ 13C values of milk are more negative compared to urine and independent of the feeding regime. Under grass feeding the analysed milk and urine samples are enriched in 13C relative to the feed, whereas under maize feeding the 13C/12C ratio of urine is in the same range and milk is depleted in 13C relative to the diet. The difference between the 15N/14N ratios for the two feeding regimes is less pronounced than the 13C/12C ratios. The δ 15N values in urine require more time to reach the new equilibrium, whereas the milk samples show no significant differences between the two feeding regimes.  相似文献   

10.
Gaseous membrane permeation (MP) technologies have been combined with continuous‐flow isotope ratio mass spectrometry for on‐line δ13C measurements. The experimental setup of membrane permeation‐gas chromatography/combustion/isotope ratio mass spectrometry (MP‐GC/C/IRMS) quantitatively traps gas streams in membrane permeation experiments under steady‐state conditions and performs on‐line gas transfer into a GC/C/IRMS system. A commercial polydimethylsiloxane (PDMS) membrane sheet was used for the experiments. Laboratory tests using CO2 demonstrate that the whole process does not fractionate the C isotopes of CO2. Moreover, the δ13C values of CO2 permeated on‐line give the same isotopic results as off‐line static dual‐inlet IRMS δ13C measurements. Formaldehyde generated from aqueous formaldehyde solutions has also been used as the feed gas for permeation experiments and on‐line δ13C determination. The feed‐formaldehyde δ13C value was pre‐determined by sampling the headspace of the thermostated aqueous formaldehyde solution. Comparison of the results obtained by headspace with those from direct aqueous formaldehyde injection confirms that the headspace sampling does not generate isotopic fractionation, but the permeated formaldehyde analyzed on‐line yields a 13C enrichment relative to the feed δ13C value, the isotopic fractionation being 1.0026 ± 0.0003. The δ13C values have been normalized using an adapted two‐point isotopic calibration for δ13C values ranging from ?42 to ?10‰. The MP‐GC/C/IRMS system allows the δ13C determination of formaldehyde without chemical derivatization or additional analytical imprecision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Carbon isotope analysis by bulk elemental analysis coupled with isotope ratio mass spectrometry has been the mainstay of δ13C analyses both at natural abundance and in tracer studies. More recently, compound‐specific isotope analysis (CSIA) has become established, whereby organic constituents are separated online by gas or liquid chromatography before oxidation and analysis of CO2 for constituent δ13C. Theoretically, there should be concordance between bulk δ13C measurements and carbon‐weighted δ13C measurements of carbon‐containing constituents. To test the concordance between the bulk and CSIA, fish oil was chosen because the majority of carbon in fish oil is in the triacylglycerol form and ~95% of this carbon is amenable to CSIA in the form of fatty acids. Bulk isotope analysis was carried out on aliquots of oil extracted from 55 fish samples and δ13C values were obtained. Free fatty acids (FFAs) were produced from the oil samples by saponification and derivatised to fatty acid methyl esters (FAMEs) for CSIA by gas chromatography/combustion/isotope ratio mass spectrometry. A known amount of an internal standard (C15:0 FAME) was added to allow analyte quantitation. This internal standard was also isotopically calibrated in both its FFA (δ13C = ?34.30‰) and FAME (δ13C = ?34.94‰) form. This allowed reporting of FFA δ13C from measured FAME δ13C values. The bulk δ13C was reconstructed from CSIA data based on each FFA δ13C and the relative amount of CO2 produced by each analyte. The measured bulk mean δ13C (SD) was ?23.75‰ (1.57‰) compared with the reconstructed bulk mean δ13C of ?23.76 (1.44‰) from CSIA and was not significantly different. Further analysis of the data by the Bland‐Altman method did not show particular bias in the data relative to the magnitude of the measurement. Good agreement between the methods was observed with the mean difference between methods (range) of 0.01‰ (?1.50 to 1.30). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
An assembly consisting of three units, that is, a meso‐substituted corrole ( C3 ), 1,8 naphthaleneimide ( NIE ), and a Zn porphyrin ( ZnP ), has been synthesized. NIE is connected to C3 through a 1,3‐phenylene bridge and to the ZnP unit through a direct C? C bond. The convergent synthetic strategy includes the preparation of a trans‐A2B‐corrole possessing the imide unit, followed by Sonogashira coupling with a meso‐substituted A3B‐porphyrin. The photophysical processes in the resulting triad ZnP-NIE-C3 are examined and compared with those of the corresponding C3-NIE dyad and the constituent reference models C3 , NIE , and ZnP . Excitation of the NIE unit in C3-NIE leads to a fast energy transfer of 98 % efficiency to C3 with a rate ken=7.5×1010 s?1, whereas excitation of the corrole unit leads to a reactivity of the excited state identical to that of the model C3 , with a deactivation rate to the ground state k=2.5×108 s?1. Energy transfer to C3 and to ZnP moieties follows excitation of NIE in the triad ZnP-NIE-C3 . The rates are ken=7.5×1010 s?1 and ken=2.5×1010 s?1 for the sensitization of the C3 and ZnP unit, respectively. The light energy transferred from NIE to Zn porphyrin unit is ultimately funneled to the corrole component, which is the final recipient of the excitation energy absorbed by the different components of the array. The latter process occurs with a rate ken=3.4×109 s?1 and 89 % efficiency. Energy transfer processes take place in all cases by a Förster (dipole–dipole) mechanism. The theory predicts quite satisfactorily the rate for the ZnP/C3 couple, where components are separated by about 23 Å, but results in calculated rates that are one to two orders of magnitude higher for the couples NIE/ZnP (D/A) and NIE/C3, which are separated by distances of about 14 and 10 Å, respectively.  相似文献   

13.
The horn of ungulate grazers offers a valuable isotopic record of their diet and environment. However, there have been no reports of the spatio‐temporal variation of the isotopic composition of horns. We investigated patterns of carbon (δ13C) and nitrogen (δ15N) isotopic composition along and perpendicular to the horn axis in Capra ibex and Rupicapra rupicapra rupicapra to assess the effects of animal age, within‐year (seasonal) and inter‐annual variation, natural contamination and sampling position on horn isotope composition. Horns of male C. ibex (n = 23) and R. r. rupicapra (n = 1) were sampled longitudinally on the front (only R. r. rupicapra) and back side and on the surface and sub‐surface. The sides of the R. r. rupicapra horn did not differ in δ13C. In both species, the horn surface had a 0.15‰ lower δ13C and a higher carbon‐to‐nitrogen (C/N) ratio than the sub‐surface. Washing the horn with water and organic solvents removed material that caused these differences. With age, the δ15N of C. ibex horns increased (+0.1‰ year?1), C/N ratio increased, and 13C discrimination relative to atmospheric CO2 (13Δ) increased slightly (+0.03‰ year?1). Geostatistical analysis of one C. ibex horn revealed systematic patterns of inter‐annual and seasonal 13C changes, but 15N changed only seasonally. The work demonstrates that isotopic signals in horns are influenced by natural contamination (δ13C), age effects (13Δ and δ15N), and seasonal (δ13C and δ15N) and inter‐annual variation (δ13C). The methods presented allow us to distinguish between these effects and thus allow the use of horns as isotopic archives of the ecology of these species and their habitat. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The first example of carboxy group assisted, remote‐selective C(sp2)?H activation with a PdII catalyst has been developed and proceeds through a possible κ2 coordination of the carboxy group, thus suppressing the ortho‐C?H activation through κ1 coordination. Besides meta‐C?H olefination, direct meta‐arylation of hydrocinnamic acid derivatives with low‐cost aryl iodides has been achieved for the first time. These findings may motivate the exploration of novel reactivities of the carboxy assisted C?H activation reactions with intriguing selectivities.  相似文献   

15.
Difference X‐ray photoelectron spectroscopy (D‐XPS) revealed the surface oxidation process of a diamond‐like carbon (DLC) film. Evaluation of surface functional groups on DLC solely by the C 1s spectrum is difficult because the spectrum is broad and has a secondary asymmetric lineshape. D‐XPS clarified the subtle but critical changes at the DLC surface caused by wet oxidation. The hydroxyl (C―OH) group was dominant at the oxidized surface. Further oxidized carbonyl (C?O) and carboxyl (including carboxylate) (COO) groups were also obtained; however, the oxidation of C?O to COO was suppressed to some extent because the reaction required C―C bond cleavage. Wet oxidation cleaved the aliphatic hydrogenated and non‐hydrogenated sp2 carbon bonds (C―H sp2 and C―C sp2) to create a pair of C―OH and hydrogenated sp3 carbon (C―H sp3) bonds. The reaction yield for C―H sp2 was superior at the surface, suggesting that the DLC film was hydrogen rich at the surface. Oxidation of aromatic sp2 rings or polycyclic aromatic hydrocarbons such as nanographite to phenols did not occur because of their resonance stabilization with electron delocalization. Non‐hydrogenated sp3 carbon (C―C sp3) bonds were not affected by oxidation, suggesting that these bonds are chemically inert. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The 1H and 13C NMR spectra of a series of 1,3,2-dioxarsolanes have been obtained at 2.1 T and some at 9.4 T. The chemical shifts and spin-spin coupling constants have been obtained from complete spectral analyses of the 1H and proton-coupled 13C spectra. The spectral data are interpreted on the basis of two rapidly interconverting half-chair conformers with a pseudoaxial substituent at arsenic. Unique assignment of syn/anti or cis/trans geometries have been made from 1H or 13C NMR spectroscopy alone. The syn and trans isomers of the 4-methyl- and 4,5-dimethyl-1,3,2-dioxarsolanes, respectively, appear to be conformationally biased towards the forms with pseudoequatorial methyl groups. The general trends in the geminal and vicinal 1H? 1H and 13C? 1H coupling constants are interpreted in terms of stereospecific, electronegativity and lone-pair effects of the oxygen heteroatoms and conformational factors. The NMR data on the 1,3,2-dioxarsolanes are discussed with reference to related 1,3-dithoxa- and 1,3-dithia- five-membered rings with As, P, S or C at the 2-position.  相似文献   

17.
Previous expansions beyond nature's preferred base‐pairing interactions have utilized either nonpolar shape‐fitting interactions or classical hydrogen bonding. Reported here is a hybrid of these systems. By replacing a single N?H with C?H at a Watson–Crick interface, the design space for new drug candidates and fluorescent nucleobase analogues is dramatically expanded, as demonstrated here by the new, highly fluorescent deoxycytidine mimic 3‐glycosyl‐5‐fluoro‐7‐methoxy‐coumarin‐2′‐deoxyribose (d C C ). dGTP is selectively incorporated across from a template d C C during enzymatic DNA synthesis. Likewise, d C C is selectively incorporated across from a template guanine when d C C is provided as the triphosphate d C C TP . DNA polymerase I (Klenow fragment) exhibited about a 10‐fold higher affinity for d C C TP than dCTP, allowing selective incorporation of d C C in direct competition experiments. These results demonstrate that a single C?H can replace N?H at a Watson–Crick‐type interface with preservation of functional selectivity and enhanced activity.  相似文献   

18.
A systematic study of carbo‐butadiene motifs not embedded in an aromatic carbo‐benzene ring is described. Dibutatrienylacetylene (DBA) targets R1?C(R)?C?C?C(Ph)?C≡C?C(Ph)?C?C?C(R)?R2 are devised, in which R is C≡CSiiPr3 and R1 and R2 are R, H, or 4‐X‐C6H4, with the latter including three known representatives (X: H, NMe2, or NH2). The synthesis method is based on the SnCl2‐mediated reduction of pentaynediols prepared by early or late divergent strategies; the latter allows access to a OMe–NO2 push–pull diaryl‐DBA. If R1 and R2 are H, an over‐reduced dialkynylbutatriene (DAB) with two allenyl caps was isolated instead of the unsubstituted DBA. If R1=R2=R, the tetraalkynyl‐DBA target was obtained, along with an over‐reduced DBA product with a 12‐membered 1,2‐alkylidene‐1H2,2H2carbo‐cyclobutadiene ring. X‐ray crystallography shows that all of the acyclic DBAs adopt a planar transtransoidtrans configuration. The maximum UV/Vis absorption wavelength is found to vary consistently with the overall π‐conjugation extent and, more intriguingly, with the π‐donor character of the aryl X substituents, which varies consistently with the first (reversible) reduction potential and first (irreversible) oxidation peak, as determined by voltammetry.  相似文献   

19.
In the 13C NMR spectra of methylglyoxal bisdimethylhydrazone, the 13C‐5 signal is shifted to higher frequencies, while the 13C‐6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the 1H‐6 chemical shift and 1J(C‐6,H‐6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the –CH═N– bond does not change. This paradox can be rationalized by the C–H?N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum‐chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ(1H‐6) and 1J(C‐6,H‐6) parameters. The effect of the C–H?N hydrogen bond on the 1H shielding and one‐bond 13C–1H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The 1H, 13C and 15N chemical shifts of the 2‐ and 8‐(CH3)2N groups attached to the –C(CH3)═N– and –CH═N– moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8‐(CH3)2N group conjugate effectively with the π‐framework, and the 2‐(CH3)2N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N‐2– and N‐8– nitrogen lone pairs to the π‐framework varies, which affects the 1H, 13C and 15N shieldings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Despite several methodologies established for C(sp2)−I selective C(sp2)−C(sp3) bond formations, achieving arene-flanked quaternary carbons by cross-coupling of tertiary alkyl precursors with bromo(iodo)arenes in a C(sp2)−I selective manner is rare. Here we report a general Ni-catalyzed C(sp2)−I selective cross-electrophile coupling (XEC) reaction, in which, beyond 3° alkyl bromides (for constructing arene-flanked quaternary carbons), 2° and 1° alkyl bromides are also demonstrated to be viable coupling partners. Moreover, this mild XEC displays excellent C(sp2)−I selectivity and functional group compatibility. The practicality of this XEC is demonstrated in simplifying the routes to several medicinally relevant and synthetically challenging compounds. Extensive experiments show that the terpyridine-ligated NiI halide can exclusively activate alkyl bromides, forming a NiI−alkyl complex through a Zn reduction. Attendant density functional theory (DFT) calculations reveal two different pathways for the oxidative addition of the NiI−alkyl complex to the C(sp2)−I bond of bromo(iodo)arenes, explaining both the high C(sp2)−I selectivity and generality of our XEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号