首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, two deep-blue emissive molecules ( SAF-PI and SAF-DPI ) are designed and synthesized using spiro[acridine-9,9’-fluorene] as a donor (D) substituted with 2-(3-methylphenyl)-1-phenyl-phenanthro[9,10-d]imidazole as an acceptor (A), forming twisted D−A and A−D−A structures, respectively. The photophysical studies and density functional theory (DFT) calculations reveal that both molecules exhibit hybridized local excited and charge transfer (HLCT) characteristics with deep blue emission color. They are effectively applied as non-doped emitters in OLEDs. Particularly, SAF-PI -based device achieves the high-definition television (HDTV) standard blue color emission peaked at 428 nm with CIE coordinate of (0.156, 0.053), a narrow full width at half maximum of 55 nm, a maximum external quantum efficiency (EQEmax) of 4.57% and an exciton utilization efficiency of 65%.  相似文献   

2.
Developing deep-blue thermally activated delayed fluorescence (TADF) emitters with both high efficiency and color purity remains a formidable challenge. Here, we proposed a design strategy by integrating asymmetric oxygen-boron-nitrogen (O−B−N) multi-resonance (MR) unit into traditional N−B−N MR molecules to form a rigid and extended O−B−N−B−N MR π-skeleton. Three deep-blue MR-TADF emitters of OBN , NBN and ODBN featuring asymmetric O−B−N, symmetric N−B−N and extended O−B−N−B−N MR units were synthesized through the regioselective one-shot electrophilic C−H borylation at different positions of the same precursor. The proof-of-concept emitter ODBN exhibited respectable deep-blue emission with Commission International de l′Eclairage coordinate of (0.16, 0.03), high photoluminescence quantum yield of 93 % and narrow full width at half maximum of 26 nm in toluene. Impressively, the simple trilayer OLED employing ODBN as emitter achieved a high external quantum efficiency up to 24.15 % accompanied by a deep blue emission with the corresponding CIE y coordinate below 0.1.  相似文献   

3.
The design and synthesis of organic materials with a narrow emission band in the longer wavelength region beyond 510 nm remain a great challenge. For constructing narrowband green emitters, we propose a unique molecular design strategy based on frontier molecular orbital engineering (FMOE), which can integrate the advantages of a twisted donor–acceptor (D-A) structure and a multiple resonance (MR) delayed fluorescence skeleton. Attaching an auxiliary donor to a MR skeleton leads to a novel molecule with twisted D-A and MR structure characteristics. Importantly, a remarkable red-shift of the emission maximum and a narrowband spectrum are achieved simultaneously. The target molecule has been employed as an emitter to fabricate green organic light-emitting diodes (OLEDs) with Commission Internationale de L'Eclairage (CIE) coordinates of (0.23, 0.69) and a maximum external quantum efficiency (EQE) of 27.0 %.  相似文献   

4.
White-light emitting materials have become a hot research field of luminescent MOF (Metal–Organic Framework) because of its high practical application value. Herein, we successfully synthesized and characterized a rht-type fluorescent MOF Zn-TDPAT [H6TDPAT = 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine] with a topology of (3, 24) connected nodes. A series of MOFs materials x%Tb + y%Eu@Zn-TDPAT were prepared by incorporating different concentrations of green emission center Tb3+ and red emission center Eu3+ into the blue-emitting Zn-MOF. The luminescence properties of MOFs materials x%Tb + y%Eu@Zn-TDPAT can be effectively adjusted by incorporating different concentrations of Tb3+ and Eu3+ and can obtain multi-color luminescence properties from blue, blue-green, green, yellow green, yellow, blue-red, yellow-red and white. According to trichromatic mechanism, by reasonably matching the intensity of blue light, green light and red light emitted by x%Tb + y%Eu@Zn-TDPAT at 420, 543 and 616 nm, MOFs materials 0.75%Tb + 5%Eu@Zn-TDPAT, 0.65%Tb + 5.5%Eu@Zn-TDPAT and 0.5%Tb + 7.5%Eu@Zn-TDPAT with white-light emission are obtained. Their CIE coordinates are 0.3162, 0.3345 (0.3162, 0.3345), (0.3138, 0.3339) and (0.3329, 0.3222), respectively, which are very close to ideal white-light emission (0.3333,0.3333).  相似文献   

5.
Phosphor materials with broad spectral range and an average emission lifetime (20 μs) have been achieved from carbon dots (CDs)−NaCl crystals. A one-pot synthesis pathway has been developed for CDs−NaCl crystals formation at room temperature. Precursor for CDs materials was screened at room temperature by oxidation methodology from different simple sugar molecules. CDs (size less than 10 nm) prepared from the fructose sugar exhibit most intense emission. Utilizing ripe banana peel (contains ∼27% of fructose) as a precursor for the carbon dot formation, white-light emission with a CIE index of (0.29, 0.34) has been achieved from the single source with CDs−NaCl crystals upon excitation at 430 nm. The crystals also function as Fabry-Perot (F−P) mode resonator for lasing, with a laser threshold value of 0.9 mW and a resonating Q-factor of 207. These results outline a new approach for realizing F−P lasing and white light emission from a non-toxic green source with a quick, facile and low-cost synthesis procedure.  相似文献   

6.
Efficient multifunctional materials acting as violet-blue emitters, as well as host materials for phosphorescent OLEDs, are crucial but rare due to demand that they should have high first singlet state (S1) energy and first triplet state (T1) energy simultaneously. In this study, two new violet-blue bipolar fluorophores, TPA-PI-SBF and SBF-PI-SBF , were designed and synthesized by introducing the hole transporting moiety triphenylamine (TPA) and spirobifluorene (SBF) unit that has high T1 into high deep blue emission quantum yield group phenanthroimidazole (PI). As the results, the non-doped OLEDs based on TPA-PI-SBF exhibited excellent EL performance with a maximum external quantum efficiency (EQEmax) of 6.76 % and a violet-blue emission with Commission Internationale de L′Eclairage (CIE) of (0.152, 0.059). The device based on SBF-PI-SBF displayed EQEmax of 6.19 % with CIE of (0.159, 0.049), which nearly matches the CIE coordinates of the violet-blue emitters standard of (0.131, 0.046). These EL performances are comparable to the best reported non-doped deep or violet-blue emissive OLEDs with CIEy<0.06 in recent years. Additionally, the green, yellow and red phosphorescent OLEDs with TPA-PI-SBF and SBF-PI-SBF as host materials achieved a high EQEmax of about 20 % and low efficiency roll-off at the ultra-high luminance of 10 000 cd m−2. These results provided a new construction strategy for designing high-performance violet-blue emitters, as well as efficient host materials for phosphorescent OLEDs.  相似文献   

7.
Deep blue emitting copolymers were synthesized by uniting the Eumelanin‐inspired indole core with fluorene and carbazole units via Suzuki polymerization. The resulting polymers, PIF and PIC, showed deep blue emission in the range of 416–418 nm and quantum yields of 0.39–0.60. Both polymers exhibited an intense and stable electrogenerated chemiluminescence. Interestingly, deep HOMO levels of −5.71 and −5.61 eV were observed for PIF and PIC, respectively. Solution processed polymer light emitting diodes (PLEDs) were fabricated using the PIF as a guest. PLEDs emitted deep blue light at 418 nm, with the luminous efficiency peaking at 1 Cd/A, given that the photopic response at that wavelength is 0.0151. The electroluminescence of PIF displayed a Commission Internationale de l'Eclairage coordinates of (0.16, 0.07) with a maximum external quantum efficiency of 1.1%. Hence, these materials prove to be promising candidates for the fabrication of deep blue PLEDs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 125–131  相似文献   

8.
The design and synthesis of organic materials with a narrow emission band in the longer wavelength region beyond 510 nm remain a great challenge. For constructing narrowband green emitters, we propose a unique molecular design strategy based on frontier molecular orbital engineering (FMOE), which can integrate the advantages of a twisted donor–acceptor (D‐A) structure and a multiple resonance (MR) delayed fluorescence skeleton. Attaching an auxiliary donor to a MR skeleton leads to a novel molecule with twisted D‐A and MR structure characteristics. Importantly, a remarkable red‐shift of the emission maximum and a narrowband spectrum are achieved simultaneously. The target molecule has been employed as an emitter to fabricate green organic light‐emitting diodes (OLEDs) with Commission Internationale de L'Eclairage (CIE) coordinates of (0.23, 0.69) and a maximum external quantum efficiency (EQE) of 27.0 %.  相似文献   

9.
Significant efforts have been made to develop high‐efficiency organic light‐emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) emitters with blue, green, yellow, and orange–red colors. However, efficient TADF materials with colors ranging from red, to deep‐red, to near‐infrared (NIR) have been rarely reported owing to the difficulty in molecular design. Herein, we report the first NIR TADF molecule TPA‐DCPP (TPA=triphenylamine; DCPP=2,3‐dicyanopyrazino phenanthrene) which has a small singlet–triplet splitting (ΔEST) of 0.13 eV. Its nondoped OLED device exhibits a maximum external quantum efficiency (EQE) of 2.1 % with a Commission International de L′Éclairage (CIE) coordinate of (0.70, 0.29). Moreover, an extremely high EQE of nearly 10 % with an emission band at λ=668 nm has been achieved in the doped device, which is comparable to the most‐efficient deep‐red/NIR phosphorescent OLEDs with similar electroluminescent spectra.  相似文献   

10.
Cyanophenyl as ancillary acceptor to modify donor-acceptor compound,plays an effective role in shifting the emission color to deep red and maintaining the luminescent efficiency.  相似文献   

11.
The development of efficient blue materials has been a continuous research topic in the field of organic light‐emitting diodes (OLEDs). In this paper, three aggregation‐induced emission enhancement active blue emitters, PIAnTPE, TPAAnTPE and CzAnTPE, are successfully synthesized by attaching a triphenylethylene unit and phenanthroimidazole/triphenylamine/carbazole moieties to the 9,10‐positions of anthracene, respectively. The three compounds exhibit good thermal stabilities, appropriate for the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels and display high photoluminescence quantum yields (PLQYs) of 65, 70 and 46 % in the solid state. Non‐doped blue devices using PIAnTPE, TPAAnTPE and CzAnTPE as the emitting layers show good electroluminescent performances, with the maximum external quantum efficiencies (EQEs) of 4.46, 4.13 and 4.04 %, respectively. More importantly, EQEs of all the three devices can be still retained when the luminescence reaches 1000 cd m?2, exhibiting quite small efficiency roll‐offs in the non‐doped OLEDs.  相似文献   

12.
Developing double boron-based emitters with extremely narrow band spectrum and high efficiency in organic light-emitting diodes (OLEDs) is crucial and challenging. Herein, we report two materials, NO-DBMR and Cz-DBMR , hinge on polycyclic heteraborin skeletons based on role-play of the highest occupied molecular orbital (HOMO) energy levels. The NO-DBMR contains an oxygen atom, whereas the Cz-DBMR has a carbazole core in the double boron-embedded ν-DABNA structure. The synthesized materials resulted in an unsymmetrical pattern for NO-DBMR and surprisingly a symmetrical pattern for Cz-DBMR . Consequently, both materials showed extremely narrow full width at half maximum (FWHM) of 14 nm in hypsochromic (pure blue) and bathochromic (Bluish green) shifted emission without losing their high color fidelity. Furthermore, both materials show high photoluminescence quantum yield (PLQY) of over 82 %, and an extremely small singlet-triplet energy gap (ΔEST) of 0.04 eV, resulting in high reverse intersystem crossing process (kRISC) of 105 s−1. Due to the efficient thermally activated delayed fluorescence (TADF) characteristics, the fabricated OLEDs based on these heteraborins manifested maximum external quantum efficiency (EQEmax) of 33.7 and 29.8 % for NO-DBMR and Cz-DBMR , respectively. This is the first work reported with this type of strategy for achieving an extremely narrow emission spectrum in hypsochromic and bathochromic shifted emissions with a similar molecular skeleton.  相似文献   

13.
Narrowband organic light-emitting diodes (OLEDs) are receiving significant attention and have demonstrated impressive performance in blue and green OLEDs. However, developing high-performance narrowband red OLEDs remains a highly desired yet challenging task. Herein, we have developed narrowband red fluorescent emitters by utilizing a boron-dipyrromethene (BODIPY) skeleton in combination with a methyl-shield strategy. These emitters exhibit small full-width at half-maxima (FWHM) ranging from 21 nm (0.068 eV) to 25 nm (0.081 eV) and high photoluminescence quantum yields (ΦPL) ranging from 88.5 % to 99.0 % in toluene solution. Using BODIPY-based luminescent materials as emitters, high-performance narrowband red OLEDs have been assembled with external quantum efficiency as high as 18.3 % at 623 nm and 21.1 % at 604 nm. This work represents, to our knowledge, the first successful case of achieving NTSC pure-red OLEDs with the Commission Internationale de l’Éclairage (CIE) coordinates of [0.67, 0.33] based on conventional fluorescent emitters.  相似文献   

14.
Advanced multiple resonance induced thermally activated delayed fluorescence (MR-TADF) emitters have emerged as a privileged motif for applications in organic light-emitting diodes (OLEDs), because they furnish highly tunable TADF characteristics and high color purity emission. Herein, based on the unique nitrogen-atom embedding molecular engineering (NEME) strategy, a series of compounds BN-TP-Nx (x=1, 2, 3, 4) have been customized. The nitrogen-atom anchored at different position of triphenylene hexagonal lattice entails varying degrees of perturbation to the electronic structure. The newly-constructed emitters have demonstrated the precise regulation of emission maxima of MR-TADF emitters to meet the actual industrial demand, and further enormously enriched the MR-TADF molecular reservoir. The BN-TP-N3-based OLED exhibits ultrapure green emission, with peak of 524 nm, full-width at half-maximum (FWHM) of 33 nm, Commission Internationale de L'Eclairage (CIE) coordinates of (0.23, 0.71), and maximum external quantum efficiency (EQE) of 37.3 %.  相似文献   

15.
《中国化学快报》2021,32(9):2887-2892
Carbon dots (CDs) are metal-free fluorescent materials that can be used in optical and electronic devices, but few studies have focused on one-step synthesis routes for CDs with tunable color and high photoluminescence quantum yield (PLQY). Herein, CDs with tunable light emission were synthesized using a novel amide-assisted solvothermal approach. The as-prepared CDs were well dispersed and homogeneous, with average diameters of approximately 2.0–4.0 nm, depending on the dopants. Owing to the surface states with different ratios of nitrogen- and oxygen-related species, different CDs can exhibit blue, green, red, or white emission with relatively high PLQYs of 61.6%, 41.3%, 29.1% and 19.7%, respectively. XPS measurements, in conjunction with DFT calculations, indicate that nitrogen substitution (pyridinic/pyrrolic nitrogen) dominates the blue emission, while introducing oxygen functional groups lowered the LUMO energy level, which resulted in redder emission. In addition, the CDs are demonstrated as a bioimaging probe in both in vitro and in vivo assays, and the white light CDs have been demonstrated to be potential fluorescent materials for white-light-emitting diode (WLED).  相似文献   

16.
代岩峰  张智强  刘一鹏  马东阁 《应用化学》2015,32(10):1139-1145
采用磷光红光/荧光蓝光/磷光绿光无间隔层三发光层结构,制备出了高效率荧光/磷光混合型白光有机发光二极管(OLEDs),其中选取具有高荧光量子产率(PLQY)的荧光染料4P-NPD(双[N-(1-萘基)-N-苯基-氨基]四联苯)作为蓝光发射分子,以及常用的高效磷光染料Ir(MDQ)2(acac)和Ir(ppy)3(acac)分别作为红光和绿光的客体,通过混合和掺杂的方法制备了相应的发光层,实现了发光层中激子的有效利用和白光发射。 制备的白光器件最大电流效率和功率效率分别达到了27.1 cd/A和30.3 lm/W,当电压为6 V时,CIE色坐标为(0.33,0.41),显色指数CRI为70,色温CCT为5432 K。 在此基础上,设计制备了高色温的荧光/磷光混合型白光OLEDs,其色温(CCT)达到了7106 K。  相似文献   

17.
Herein, we present a molecular design of chrysene-based deep-blue emissive materials ( TC , TpPC , TpXC , and TmPC ), in which chrysene as a core is functionalized with different triphenylamine moieties to realize a fine-tuning deep-blue fluorescence with superior electroluminescent (EL) performance. The photophysical analyses and density functional theory (DFT) calculations disclose that TC , TpPC , and TpXC possess HLCT characteristics with intense deep-blue emission in the solid-state, good hole-transporting ability, and high thermal and electrochemical stabilities. They are successfully employed as non-doped emitters in simple structured OLEDs (ITO/PEDOT : PSS : NF/emitter/TPBi/LiF : Al). In particular, TC -based device emits a deep-blue light with an emission peak at 446 nm and CIE color coordinates of (0.148, 0.096), a maximum external quantum efficiency (EQEmax) of 4.31%, and a low turn-on voltage of 2.8 V.  相似文献   

18.
Novel blue emitters, oligo-MCPPs (tri-MCPP, tetra-MCPP, and penta-MCPP), have been synthesized and characterized. The introduction of cyclopenta[def]phenanthrene (CPP) units into the structure of oligo-MCPPs gave LEDs with high efficiency and pure blue emission. UV-visible absorption spectra of the thin films of these compounds appear at 333-354 nm, and their maximum PL emission at 416-447 nm. Multilayer organic EL devices with oligo-MCPPs as an emitting layer showed the turn-on voltage of about 4.8 V, the maximum brightness of 1076 cd/m2 (at 8.2 V), the maximum luminescence efficiency of 0.81 cd/A, and the CIE coordinates of (0.17, 0.14) with blue color.  相似文献   

19.
Though the flourishment of materials with multiple resonance (MR) in blue to green regions, red-emissive MR emitters are still rare in literatures, which definitely should be resolved for further applications. Herein, we report a simple molecular design strategy for the construction of pure-red MR emitters by conjugate charge transfer, which could greatly enhance the π-conjugation degree and charge-transfer property of the target molecule while maintaining the basic feature of MR, leading to a significant redshift of more than 128 nm compared to the selected parent MR core. The proof-of-concept emitter PPZ-BN exhibited a pure-red emission with a dominant peak at 613 nm and a small full-width-at-half-maximum of 0.16 eV (48 nm). The optimized organic light-emitting diode showed a high external quantum efficiency of 26.9 %, a small efficiency roll-off, and an excellent operation stability (LT99) of more than 43 hours at an initial luminance of 10 000 cd m−2.  相似文献   

20.
A pure blue light emitting binaphthyl derivative:Synthesis and properties   总被引:1,自引:1,他引:0  
A binaphthyl derivative with pyrene on 3 and 3' positions was synthesized and characterized via Suzuki coupling reaction. Emission maximum in solution was located at 390 nm with a quantum efficiency of 68% by taking 9,10-diphenyl anthracene as reference,while it is shifted to 450 nm with FWHM of 104 nm resulting from aggregation state in solid film.Glass transition temperature(Tg)and decomposition temperature were measured to be 184 and 447℃,respectively,by DSC and TGA.Unlike its photoluminescence spectrum,electroluminescent spectrum peaked at about 460 nm and shows a FWHM of 69 nm corresponding to a pure blue emission.The turn-on voltage,luminance and efficiency maximum were 5 V,2953 cd/m^2 and 1.37cd/A with CIE color coordinate of(0.16,0.15),in the device structure of ITO/NPB(40nm)/PY-BN-PY(15nm)/BPhen(40nm)/Mg:Ag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号