首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The clectrochemical behaviour of the complexes [RuII(L)(CO)2Cl2], [RuII(L)(CO)Cl3][Me4N] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 (L = 2,2′-bipyridine or 4,4′-isopropoxycarbonyl-2,2′-bipyridine) has been investigated in CH3CN. The oxidation of [Ru(L)(CO)2Cl2] produces new complexes [RuIII(L)(CO)(CH3CN)2Cl]2+ as a consequence of the instability of the electrogenerated transient RuIII species [RuIII(L)(CO)2Cl2]+. In contrast, the oxidation of [RuII(L)(CO)Cl3][Me4N] produces the stable [RuIII(L)(CO)Cl3] complex. In contrast [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 is not oxidized in the range up to the most positive potentials achievable. The reduction of [RuII(L)(CO)2Cl2] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 results in the formation of identical dark blue strongly adherent electroactive films. These films exhibit the characteristics of a metal-metal bond dimer structure. No films are obtained on reduction of [RuII(L)(CO)Cl3][Me4N]. The effect of the substitution of the bipyridine ligand by electron-withdrawing carboxy ester groups on the electrochemical behaviour of all these complexes has also been investigated.  相似文献   

2.
Hereby we present the synthesis of several ruthenium(II) and ruthenium(III) dithiocarbamato complexes. Proceeding from the Na[trans‐RuIII(dmso)2Cl4] ( 2 ) and cis‐[RuII(dmso)4Cl2] ( 3 ) precursors, the diamagnetic, mixed‐ligand [RuIIL2(dmso)2] complexes 4 and 5 , the paramagnetic, neutral [RuIIIL3] monomers 6 and 7 , the antiferromagnetically coupled ionic α‐[RuIII2L5]Cl complexes 8 and 9 as well as the β‐[RuIII2L5]Cl dinuclear species 10 and 11 (L=dimethyl‐ (DMDT) and pyrrolidinedithiocarbamate (PDT)) were obtained. All the compounds were fully characterised by elemental analysis as well as 1H NMR and FTIR spectroscopy. Moreover, for the first time the crystal structures of the dinuclear β‐[RuIII2(dmdt)5]BF4 ? CHCl3 ? CH3CN and of the novel [RuIIL2(dmso)2] complexes were also determined and discussed. For both the mono‐ and dinuclear RuII and RuIII complexes the central metal atoms assume a distorted octahedral geometry. Furthermore, in vitro cytotoxicity of the complexes has been evaluated on non‐small‐cell lung cancer (NSCLC) NCI‐H1975 cells. All the mono‐ and dinuclear RuIII dithiocarbamato compounds (i.e., complexes 6 – 10 ) show interesting cytotoxic activity, up to one order of magnitude higher with respect to cisplatin. Otherwise, no significant antiproliferative effect for either the precursors 2 and 3 or the RuII complexes 4 and 5 has been observed.  相似文献   

3.
RuII‐ and RuIII‐substituted α‐Keggin‐type phosphotungstates with a dimethyl sulfoxide (DMSO) ligand, [PW11O39RuIIDMSO]5– ( 1 ) and [PW11O39RuIIIDMSO]4– ( 2 ), were synthesized. Compound 1 was prepared by reaction of [PW11O39]7– with [RuII(DMSO)4]Cl2 in water at 125 °C under hydrothermal conditions and was isolated as a cesium salt. Compound 2 was prepared by reaction of 1 with bromine in water at 60 °C and was isolated as a cesium salt. The compounds were characterized by cyclic voltammetry, elemental analysis, UV/Vis, IR,31P NMR, 183W NMR, 1H NMR, and XANES (Ru K‐edge and L3‐edge)spectroscopic methods. Single crystal structural analysis of 1 revealed that RuII is incorporated in the α‐Keggin framework and coordinated by DMSO through a Ru–S bond. Cyclic voltammetry of 1 indicated that the incorporated RuII‐DMSO is reversibly oxidizable to the RuIII‐DMSO derivative 2 . Compound 1 showed catalytic activity for water oxidation in the presence of cerium ammonium nitrate as an oxidant.  相似文献   

4.
Ruthenium(III)‐substituted α‐Keggin‐type silicotungstates with pyridine‐based ligands, [SiW11O39RuIII(Py)]5?, (Py: pyridine ( 1 ), 4‐pyridine‐carboxylic acid ( 2 ), 4,4′‐bipyridine ( 3 ), 4‐pyridine‐acetamide ( 4 ), and 4‐pyridine‐methanol ( 5 )) were prepared by reacting [SiW11O39RuIII(H2O)]5? with the pyridine derivatives in water at 80 °C and then isolated as their hydrated cesium salts. These compounds were characterized using cyclic voltammetry (CV), UV/Vis, IR, and 1H NMR spectroscopy, elemental analysis, titration, and X‐ray absorption near‐edge structure (XANES) analysis (Ru K‐edge and L3‐edge). Single‐crystal X‐ray analysis of compounds 2 , 3 , and 4 revealed that RuIII was incorporated in the α‐Keggin framework and was coordinated by pyridine derivatives through a Ru? N bond. In the solid state, compounds 2 and 3 formed a dimer through π? π interaction of the pyridine moieties, whereas they existed as monomers in solution. CV indicated that the incorporated RuIII–Py was reversibly oxidized into the RuIV–Py derivative and reduced into the RuII–Py derivative.  相似文献   

5.
The complex cis‐[RuIII(dmbpy)2Cl2](PF6) ( 2 ) (dmbpy = 4, 4′‐dimethyl‐2, 2′‐bipyridine) was obtained from the reaction of cis‐[RuII(dmbpy)2Cl2] ( 1 ) with ammonium cerium(IV) nitrate followed by precipitation with saturated ammonium hexafluoridophosphate. The 1H NMR spectrum of the RuIII complex confirms the presence of paramagnetic metal atoms, whereas that of the RuII complex displays diamagnetism. The 31P NMR spectrum of the RuIII complex shows one signal for the phosphorus atom of the PF6 ion. The perspective view of each [RuII/III(dmbpy)2Cl2]0/+ unit manifests that the ruthenium atom is in hexacoordinate arrangement with two dmbpy ligands and two chlorido ligands in cis position. As the oxidation state of the central ruthenium metal atom becomes higher, the average Ru–Cl bond length decreases whereas the Ru–N (dmbpy) bond length increases. The cis‐positioned dichloro angle in RuIII is 1.3° wider than that in the RuII. The dihedral angles between pair of planar six‐membered pyridyl ring in the dmbpy ligand for the RuII are 4.7(5)° and 5.7(4)°. The observed inter‐planar angle between two dmbpy ligands in the RuII is 89.08(15)°, whereas the value for the RuIII is 85.46(20)°.  相似文献   

6.
An N-pyridyl-o-aminophenol derivative that stabilises mixed-valence states of ruthenium ions is disclosed. A diruthenium complex, [(LIQ0)Ru2Cl5] ⋅ MeOH ( 1⋅ MeOH) is successfully isolated, in which LIQ0 is the o-iminobenzoquinone form of 2-[(3-nitropyridin-2-yl)amino]phenol (LAPH2). In 1 , LIQ0 oriented towards one ruthenium centre is a non-innocent NO-donor redox ligand, whereas another oriented towards another ruthenium centre is an innocent pyridine-donor redox ligand. Complex 1 is a diruthenium(II,III) mixed-valence complex, [RuII(LIQ0)(μ-Cl)2RuIII], with a minor contribution from the diruthenium(III,III) state. [RuIII(LISQ.−)(μ-Cl)2RuIII] contains LISQ.−, which is the o-iminobenzosemiquinonate anion radical form of the ligand. Complexes 1 and 1 + are diruthenium(II,II), [RuII(LIQ0)(μ-Cl)2RuII], and diruthenium(III,III), [RuIII(LIQ0)(μ-Cl)2RuIII], complexes, respectively, of LIQ0. Complex 1 2− is a diruthenium(II,II) complex of the o-iminobenzosemiquinonate anion radical (LISQ.−), [RuII(LISQ.−)(μ-Cl)2RuII], with a minor contribution from the diruthenium(III,II) form, [RuIII(LAP2−)(μ-Cl)2RuII]. Complex 1 2+ is a diruthenium(III,IV) mixed-valence complex of LIQ0, [RuIII(LIQ0)(μ-Cl)2RuIV]. Complexes 1 and 1 2+ exhibit inter-valence charge-transfer transitions at λ=1300 and 1370 nm, respectively.  相似文献   

7.
A diverse set of 2 e/2 H+ reactions are described that interconvert [RuII(bpy)(en*)2]2+ and [RuIV(bpy)(en‐H*)2]2+ (bpy=2,2′‐bipyridine, en*=H2NCMe2CMe2NH2, en*‐H=H2NCMe2CMe2NH), forming or cleaving different O−H, N−H, S−H, and C−H bonds. The reactions involve quinones, hydrazines, thiols, and 1,3‐cyclohexadiene. These proton‐coupled electron transfer reactions occur without substrate binding to the ruthenium center, but instead with precursor complex formation by hydrogen bonding. The free energies of the reactions vary over more than 90 kcal mol−1, but the rates are more dependent on the type of X−H bond involved than the associated ΔG °. There is a kinetic preference for substrates that have the transferring hydrogen atoms in close proximity, such as ortho ‐tetrachlorobenzoquinone over its para ‐isomer and 1,3‐cyclohexadiene over its 1,4‐isomer, perhaps hinting at the potential for concerted 2 e/2 H+ transfers.  相似文献   

8.
The complex [MnIV(napbh)2] (napbhH2 = N-(2-hydroxynaphthalen-1-yl)methylenebenzoylhydrazide) reacts with activated ruthenium(III) chloride in methanol in 1 : 1.2 molar ratio under reflux, giving heterobimetallic complexes, [MnIV(napbh)2RuIIICl3(H2O)] · [RuIII(napbhH)Cl2(H2O)] reacts with Mn(OAc)2·4H2O in methanol in 1 : 1.2 molar ratio under reflux to give [RuIII(napbhH)Cl2(H2O)MnII(OAc)2]. Replacement of aquo in these heterobimetallic complexes has been observed when the reactions are carried out in the presence of pyridine (py), 3-picoline (3-pic), or 4-picoline (4-pic). The molar conductances for these complexes in DMF indicates 1 : 1 electrolytes. Magnetic moment values suggest that these heterobimetallic complexes contain MnIV and RuIII or RuIII and MnII in the same structural unit. Electronic spectral studies suggest six coordinate metal ions. IR spectra reveal that the napbhH2 ligand coordinates in its enol form to MnIV and bridges to RuIII and in the keto form to RuIII and bridging to MnII.  相似文献   

9.
The synthesis of [Ti6O4(OiPr)8(O2CPh)8] ( 3 ) and [RuCl(N≡CR)5][RuCl4(N≡CR)2] ( 4a , R = Me; 4b , R = Ph), [Ru(N≡CPh)6][RuCl4(N≡CPh)2] ( 5 ) and [H3O][RuCl4(N≡CMe)2] ( 7a ) is discussed. Crystallization of 5 from CH2Cl2 gave trans-[RuCl2(N≡CPh)4] ( 6 ). The solid-state structures of 3 , 4a , b , 5 , 6 and 7a are reported. Complex 4b forms a 3D network, while 6 displays a 2D structure, due to π-interactions between the benzonitrile ligands. The (spectro)electrochemical behavior of 4a , b and 6 was studied at 25 and –72 °C and the results thereof are compared with [NEt4][RuCl4(N≡CMe)2] ( 7b ) and [RuCl(N≡CPh)5][PF6] ( 8 ). The electrochemical response of the cation and the anion in 4a , b are independent from each other. [RuCl(N≡CR)5]+ possesses one reversible RuII/RuIII process. However, [RuCl4(N≡CMe)2] was shown to be prone to ligand exchange and disproportionation upon formation of either a RuIV and RuII species at 25 °C, while at –72 °C the rapid conversion of the electrochemically formed species is hindered. In situ IR and UV/Vis/NIR studies confirmed the respective disproportionation reaction products of the aforementioned oxidation and reduction, respectively.  相似文献   

10.
In the title one‐dimensional complex, {[MnIII(C9H10NO2)2]Cl}n, the Schiff base ligand 2‐[(2‐hydroxy­ethyl)­imino­methyl]­phenolate (Hsae) functions as both a bridging and a chelating ligand. The MnIII ion is six‐coordinated by two N and four O atoms from four different Hsae ligands, yielding a distorted MnO4N2 octahedral environment. Each [MnIII(Hsae)2]+ cationic unit has the Mn atom on an inversion centre and each [MnIII(Hsae)2]+ cation lies about another inversion centre. The chain‐like complex is further extended into a three‐dimensional network structure through Cl⋯H—O hydrogen bonds and C—H⋯π contacts involving the Hsae rings.  相似文献   

11.
Detailed studies on hydrogen evolution by decamethylruthenocene ([Cp*2RuII]) highlighted that metallocenes are capable of photoreducing hydrogen without the need for an additional sensitizer. Electrochemical, gas chromatographic, and spectroscopic (UV/Vis, 1H and 13C NMR) measurements corroborated by DFT calculations indicated that the production of hydrogen occurs by a two-step process. First, decamethylruthenocene hydride [Cp*2RuIV(H)]+ is formed in the presence of an organic acid. Subsequently, [Cp*2RuIV(H)]+ is reversibly reduced in a heterolytic reaction with one-photon excitation leading to a first release of hydrogen. Thereafter, the resultant decamethylruthenocenium ion [Cp*2RuIII]+ is further reduced with a second release of hydrogen by deprotonation of a methyl group of [Cp*2RuIII]+. Experimental and computational data show spontaneous conversion of [Cp*2RuII] to [Cp*2RuIV(H)]+ in the presence of protons. Calculations highlight that the first reduction is endergonic (ΔG0=108 kJ mol−1) and needs an input of energy by light for the reaction to occur. The hydricity of the methyl protons of [Cp*2RuII] was also considered.  相似文献   

12.
Summary The RuIII complex [RuCl2(acac)(acacH)] (acacH = acetylacetone) was isolated in high yield by reacting RuCl3 with acacH. The compound was used as a convenient starting material for the synthesis of a variety of RuIII complexes, viz. [RuCl2(acac)L2] (L = PPh3, AsPh3, py, MeCN, Me2SO, o-phenylenediamine; L2 = phen or bipy) and M2[RuCl4(acac)] (M = Me4N, Rb or Cs). The compounds were characterized by physicochemical and spectroscopic methods.  相似文献   

13.
The dianion [Ru10C(CO)24]2− in CH2Cl2 reacts with CO under ambient conditions to produce quantitative amounts of the species [Ru3(CO)12] and [Ru6C(CO)16]2−; the hydrido-anion [HRu10C(CO)24] reacts similarly to form [Ru6C(CO)16].  相似文献   

14.
A polyoxometalate of the Keggin structure substituted with RuIII, 6Q5[RuIII(H2O)SiW11O39] in which 6Q=(C6H13)4N+, catalyzed the photoreduction of CO2 to CO with tertiary amines, preferentially Et3N, as reducing agents. A study of the coordination of CO2 to 6Q5[RuIII(H2O)SiW11O39] showed that 1) upon addition of CO2 the UV/Vis spectrum changed, 2) a rhombic signal was obtained in the EPR spectrum (gx=2.146, gy=2.100, and gz=1.935), and 3) the 13C NMR spectrum had a broadened peak of bound CO2 at 105.78 ppm (Δ1/2=122 Hz). It was concluded that CO2 coordinates to the RuIII active site in both the presence and absence of Et3N to yield 6Q5[RuIII(CO2)SiW11O39]. Electrochemical measurements showed the reduction of RuIII to RuII in 6Q5[RuIII(CO2)SiW11O39] at ?0.31 V versus SCE, but no such reduction was observed for 6Q5[RuIII(H2O)SiW11O39]. DFT‐calculated geometries optimized at the M06/PC1//PBE/AUG‐PC1//PBE/PC1‐DF level of theory showed that CO2 is preferably coordinated in a side‐on manner to RuIII in the polyoxometalate through formation of a Ru? O bond, further stabilized by the interaction of the electrophilic carbon atom of CO2 to an oxygen atom of the polyoxometalate. The end‐on CO2 bonding to RuIII is energetically less favorable but CO2 is considerably bent, thus favoring nucleophilic attack at the carbon atom and thereby stabilizing the carbon sp2 hybridization state. Formation of a O2C–NMe3 zwitterion, in turn, causes bending of CO2 and enhances the carbon sp2 hybridization. The synergetic effect of these two interactions stabilizes both Ru–O and C–N interactions and probably determines the promotional effect of an amine on the activation of CO2 by [RuIII(H2O)SiW11O39]5?. Electronic structure analysis showed that the polyoxometalate takes part in the activation of both CO2 and Et3N. A mechanistic pathway for photoreduction of CO2 is suggested based on the experimental and computed results.  相似文献   

15.
New chlorido-dimethylsulfoxide-ruthenium(III) complexes with different N6-substituted adenines have been prepared and characterized. Three ruthenium complexes have been structurally characterized by X-ray diffraction crystallography: [RuIIICl4(DMSO)[H-(N6-pentyladenine)]] (1), [RuIIICl4(DMSO)[H-(N6-hexyladenine)]] (2) and [RuIIICl4(DMSO)[H-(N6,N6-dibutyladenine)]] (3). In all cases ruthenium ion show octahedral geometry coordinated to four chlorido ligands and one S coordinated sulfoxide (DMSO). The coordination sphere is completed by an adenine moiety coordinated to Ru(III) via N(9) and protonated at N(3). Other similar complexes have been obtained with N6-propyladenine, [RuIIICl4(DMSO)[H-(N6-propyladenine)]] · 0.5EtOH (4) and N6-benzylaminopurine (BAP) [RuIIICl4(DMSO)[H-(BAP)]] · 0.5H2O (5) which have been spectroscopically characterized. Otherwise, in different reaction conditions, we have obtained an out sphere complex of Ru(II), [H-(BAP)][RuIICl3(DMSO)3] (6), with identical complex unit than the structurally solved [H-(creat)][RuIICl3(DMSO)3] (7) which was included for comparison purposes. Preliminary electrophoretic mobility and atomic force microscopy (AFM) studies of the interaction between Ru(III) compounds and plasmidic DNA pBR322 have been performed. These results show different morphological changes in plasmidic DNA forms.  相似文献   

16.
An anti‐metastatic drug, NAMI‐A ((ImH)[RuIIICl4(Im)(dmso)]; Im=imidazole, dmso=S‐bound dimethylsulfoxide), and a cytotoxic drug, KP1019 ((IndH)[RuIIICl4(Ind)2]; Ind=indazole), are two Ru‐based anticancer drugs in human clinical trials. Their reactivities under biologically relevant conditions, including aqueous buffers, protein solutions or gels (e.g, albumin, transferrin and collagen), undiluted blood serum, cell‐culture medium and human liver (HepG2) cancer cells, were studied by Ru K‐edge X‐ray absorption spectroscopy (XAS). These XAS data were fitted from linear combinations of spectra of well‐characterised Ru compounds. The absence of XAS data from the parent drugs in these fits points to profound changes in the coordination environments of RuIII. The fits point to the presence of RuIV/III clusters and binding of RuIII to S‐donor groups, amine/imine and carboxylato groups of proteins. Cellular uptake of KP1019 is approximately 20‐fold higher than that of NAMI‐A under the same conditions, but it diminishes drastically after the decomposition of KP1019 in cell‐culture media, which indicate that the parent complex is taken in by cells through passive diffusion.  相似文献   

17.
Ruthenium is a platinoid that exhibits a range of unique chemical properties in solution, which are exploited in a variety of applications, including luminescent probes, anticancer therapies, and artificial photosynthesis. This paper focuses on a recently demonstrated ability of this metal in its +3 oxidation state to form highly stable complexes with tris (hydroxymethyl)aminomethane (H2NC(CH2OH)3, Tris‐base or T) and imidazole (Im) ligands, where a single RuIII cation is coordinated by two molecules of each T and Im. High‐resolution electrospray ionization mass spectrometry (ESI MS) is used to characterize RuIII complexes formed by placing a RuII complex [(NH3)5RuIICl]Cl in a Tris buffer under aerobic conditions. The most abundant ionic species in ESI MS represent mononuclear complexes containing an oxidized form of the metal, ie, [XnRuIIIT2 – 2H]+, where X could be an additional T (n = 1) or NH3 (n = 0‐2). Di‐ and tri‐metal complexes also give rise to a series of abundant ions, with the highest mass ion representing a metal complex with an empirical formula Ru3C24O21N6H66 (interpreted as cyclo(T2RuO)3, a cyclic oxo‐bridged structure, where the coordination sphere of each metal is completed by two T ligands). The empirical formulae of the binuclear species are consistent with the structures representing acyclic fragments of cyclo(T2RuO)3 with addition of various combinations of ammonia and dioxygen as ligands. Addition of histidine in large molar excess to this solution results in complete disassembly of poly‐nuclear complexes and gives rise to a variety of ionic species in the ESI mass spectrum with a general formula [RuIIIHiskTm (NH3)n ? 2H]+, where k = 0 to 2, m = 0 to 3, and n = 0 to 4. Ammonia adducts are present for all observed combinations of k and m, except k = m = 2, suggesting that [His2RuIIIT2 ? 2H]+ represents a complex with a fully completed coordination sphere. The observed cornucopia of RuIII complexes formed in the presence of histidine is in stark contrast to the previously reported selective reactivity of imidazole, which interacts with the metal by preserving the RuT2 core and giving rise to a single abundant ruthenium complex (represented by [Im2RuIIIT2 ? 2H]+ in ESI mass spectra). Surprisingly, the behavior of a hexa‐histidine peptide (HHHHHH) is similar to that of a single imidazole, rather than a single histidine amino acid: The RuT2 core is preserved, with the following ionic species observed in ESI mass spectra: [HHHHHH·(RuIIIT2)m ? (3m‐1)H]+ (m = 1‐3). The remarkable selectivity of the imidazole interaction with the RuIIIT2 core is rationalized using energetic considerations at the quantum mechanical level of theory.  相似文献   

18.
Treatment of [Ru2(μ-CO)(CO)4{μ-(RO)2PN(Et)P(OR)2}2] (R = Me or Pri), electron-rich derivatives of [Ru2(CO)9], with a twice molar amount of a silver(I) salt in aprotic, weakly co-ordinating solvents such as acetone, acetonitrile or benzonitrile leads to the formation of the solvento species [Ru2(CO)5(solvent)- {μ-(RO)2PN(Et)P(OR)2}2]2+. The structure of the benzonitrile derivative, [Ru2(CO)5(PhCN){μ-(PriO)2PN(Et)P(OPri)2}2](SbF6)2, has been established by X-ray crystallography. The acetone molecule in [Ru2(CO)5(acetone){μ- (RO)2PN(Et)P(OR)2}2]2+ is readily replaced by various nucleophiles to afford products of the type [Ru2(CO)5L{μ-(RO)2PN(Et)P(OR)2}2]2+, where L is a neutral ligand such as CO, Me2C6H3NC, PhCN, C5H5N, H2O, Me2S or SC4H8, [Ru2Y(CO)5{μ-(RO)2PN(Et)P(OR)2}2]2+, where Y is an anionic ligand such as Cl, Br, I, CN, SCN, MeCO2, CF3CO2 or [Ru2(μ-Y)(CO)4{μ-(RO)2- PN(Et)P(OR)2}2]+ where Y is an anionic ligand such as Cl, Br, I, SPh, S2CNEt2, MeCO2 or CF3CO2.  相似文献   

19.
Abstract

New dinuclear asymmetric complexes of ruthenium and rhenium, of formula [(bpy)(CO)3 ReI(4,4′-bpy)RuII/III(NH3)5]3+/4+ have been prepared and characterized by spectroscopic and electrochemical techniques. In the mixed-valent species [ReI, RuIII], the back electron transfer reaction RuII → ReII, that occurs after light excitation, is predicted to be in the Marcus inverted region. This fact is consistent with the observed quenching of the luminiscence of the Re chromophore in [(bpy)(CO)3ReI(4,4′-bpy)RuIII(NH3)5]4+, when compared to the parent complex [(bpy)(CO)3ReI(4,4′-bpy)]+. A theoretical treatment due to Creutz, Newton and Sutin has been successfully applied to predict the electronic coupling element in the mixed-valent complex.  相似文献   

20.
《Polyhedron》1999,18(20):2625-2631
Treatment of RuHCl(CO)(L)3 with a slight excess amount of K[HB(3,5-Me2pz)3] in boiling MeOH solution yielded unusual 3,5-dimethylpyrzaole (Hdmpz) complexes, RuHCl(CO)(Hdmpz)(L)2 (L=PPh3, 1 or AsPh3, 2). Unexpectedly the dissociation of the bonds between the boron atom and the nitrogen atoms of the potentially tridentate [HB(3,5-Me2pz)3] ligand during the coordination of the ligand to the RuII metal has been observed. In a separate preparation, the RuHCl(CO)(Hdmpz)(PPh3)2 complex has also been synthesized from the reaction between RuHCl(CO)(PPh3)3 and the monodentate Hdmpz ligand. Complexes 1 and 2 have been characterized by elemental analysis, IR and 1H NMR spectroscopies. Compound 1 has also been prepared by the reaction between RuHCl(CO)(PPh3)3 and K[H2B(3,5-Me2pz)2] in boiling toluene solution. The crystal structure of 2 has been studied by X-ray crystallography. The geometrical structure around RuII of 2 is a distorted octahedral structure. The crystal structure of 2 consists of a discrete monomeric compound. It is interesting to find that the sterically-demanding [HB(3,5-Me2pz)3] or [H2B(3,5-Me2pz)2] ligands break up during the reaction with the RuII complexes to form the neutral 3,5-dimethylpyrazole complexes. In contrast to these observations, [H2Bpz2] and [H2B(4-Brpz)2] ligands form very stable RuII complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号