首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Structural properties of nonionic cyclodextrin colloids in water   总被引:1,自引:0,他引:1  
The amphiphilic character in water of a novel class of chemically modified cyclodextrins has been investigated by means of small-angle X-ray scattering and light scattering. The introduction ofhydrophilic oligo(ethylene glycol) onto the secondary side of heptakis[6-alkylthio-6-deoxy-2-oligo(ethylene glycol)]-beta-cyclodextrins produces an enhanced water solubility of these molecules. Shape and dimensions of the generated micellar aggregates, analyzed in terms of a suitable core-shell model, remain stable in the wide concentration range explored. The highly associative behavior of these macromolecules is evidenced by the very low value of the critical micelle concentration (cmc), which is about 2 orders of magnitude smaller than the cmc usually obtained for traditional surfactant. Despite the complex geometry of this novel macromolecule, shape and dimensions of generated micellar aggregates can be properly described according to the thermodynamic approaches generally used for amphiphilic molecules and block copolymers. Results show how the modulation of hydrophobic and hydrophilic components sensitively influence the structural features of the generated aggregates thus offering the possibility to control molecular organization in a manner similar to that for traditional colloids. For all the classes of the investigated systems, the small micelles have been found in equilibrium with polydisperse large aggregates of entangled micelles. These novel nonionic colloidal systems combine inclusion and transport properties of host macrocycles, such as cyclodextrin, together with the increased stability of colloidal aggregates, and may be of interest for their potential application as innovative drug delivery systems.  相似文献   

3.
Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept—that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols.  相似文献   

4.
Recently, self-assembled lyotropic liquid crystals (LLCs) of lipids and water have attracted the attention of both scientific and applied research communities, due to their remarkable structural complexity and practical potential in diverse applications. The phase behavior of mixtures of glycerol monooleate (monoolein, GMO) was particularly well studied due to the potential utilization of these systems in drug delivery systems, food products, and encapsulation and crystallization of proteins. Among the studied lyotropic mesophases, reverse hexagonal LLC (H(II)) of monoolein/water were not widely subjected to practical applications since these were stable only at elevated temperatures. Lately, we obtained stable H(II) mesophases at room temperature by incorporating triacylglycerol (TAG) molecules into the GMO/water mixtures and explored the physical properties of these structures. The present feature article summarizes recent systematic efforts in our laboratory to utilize the H(II) mesophases for solubilization, and potential release and crystallization of biomacromolecules. Such a concept was demonstrated in the case of two therapeutic peptides-cyclosporin A (CSA) and desmopressin, as well as RALA peptide, which is a model skin penetration enhancer, and eventually a larger macromolecule-lysozyme (LSZ). In the course of the study we tried to elucidate relationships between the different levels of organization of LLCs (from the microstructural level, through mesoscale, to macroscopic level) and find feasible correlations between them. Since the structural properties of the mesophase systems are a key factor in drug release applications, we investigated the effects of these guest molecules on their conformations and the way these molecules partition within the domains of the mesophases. The examined H(II) mesophases exhibited great potential as transdermal delivery vehicles for bioactive peptides, enabling tuning the release properties according to their chemical composition and physical properties. Furthermore, we showed a promising opportunity for crystallization of CSA and LSZ in single crystal form as model biomacromolecules for crystallographic structure determination. The main outcomes of our research demonstrated that control of the physical properties of hexagonal LLC on different length scales is key for rational design of these systems as delivery vehicles and crystallization medium for biomacromolecules.  相似文献   

5.
One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the “hybrid strategy”, namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term “hybrid” has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.  相似文献   

6.
One of the major goals in systems chemistry is to create molecular assemblies with emergent properties that are characteristic of life. An interesting approach toward this goal is based on merging different biological building blocks into synthetic systems with properties arising from the combination of their molecular components. The covalent linkage of nucleic acids (or their constituents: nucleotides, nucleosides and nucleobases) with lipids in the same hybrid molecule leads, for example, to the so-called nucleolipids. Herein, we describe nucleolipids with a very short sequence of two nucleobases per lipid, which, in combination with hydrophobic effects promoted by the lipophilic chain, allow control of the self-assembly of lipidic amphiphiles to be achieved. The present work describes a spectroscopic and microscopy study of the structural features and dynamic self-assembly of dinucleolipids that contain adenine or thymine moieties, either pure or in mixtures. This approach leads to different self-assembled nanostructures, which include spherical, rectangular and fibrillar assemblies, as a function of the sequence of nucleobases and chiral effects of the nucleolipids involved. We also show evidence that the resulting architectures can encapsulate hydrophobic molecules, revealing their potential as drug delivery vehicles or as compartments to host interesting chemistries in their interior.  相似文献   

7.
8.
Azobenzene is one of the most studied light-controlled molecular switches and it has been incorporated in a large variety of supramolecular systems to control their structural and functional properties. Given the peculiar isomeric distribution at the photoexcited state (PSS), azobenzene derivatives have been used as photoactive framework to build metastable supramolecular systems that are out of the thermodynamic equilibrium. This could be achieved exploiting the peculiar E/Z photoisomerization process that can lead to isomeric ratios that are unreachable in thermal equilibrium conditions. The challenge in the field is to find molecular architectures that, under given external circumstances, lead to a given isomeric ratio in a reversible and predictable manner, ensuring an ultimate control of the configurational distribution and system composition. By reviewing early and recent works in the field, this review aims at describing photoswitchable systems that, containing an azobenzene dye, display a controlled configurational equilibrium by means of a molecular recognition event. Specifically, examples include programmed photoactive molecular architectures binding cations, anions and H-bonded neutral guests. In these systems the non-covalent molecular recognition adds onto the thermal and light stimuli, equipping the supramolecular architecture with an additional external trigger to select the desired configuration composition.  相似文献   

9.
Complexity is a concept that is being considered in chemistry as it has shown potential to reveal interesting phenomena. Thus, it is possible to study chemical phenomena in a new approach called systems chemistry. The systems chemistry has an organization and function, which are regulated by the interactions among its components. At the simplest level, noncovalent interactions between molecules can lead to the emergence of large structures. Consequently, it is possible to go from the molecular to the supramolecular systems chemistry, which aims to develop chemical systems highly complex through intra- and intermolecular forces. Proper use of the interactions previously mentioned allow a glimpse of supramolecular system chemistry in many tasks such as structural properties reflecting certain behaviors in the chemistry of materials, for example, electrical and optical, processes of molecular recognition and among others. In the last time, within this area, inorganic supramolecular systems chemistry has been developed. Those systems have a structural orientation which is defined by certain forces that predominate in the associations among molecules. It is possible to recognize these forces as hydrogen bonding, π-π stacking, halogen bonding, electrostatic, hydrophobic, charge transfer, metal coordination, and metallophilic interactions. The presence of these forces in supramolecular system yields certain properties such as light absorption and luminescence. The quantum theoretical modeling plays an important role in the designing of the supramolecular system. The goal is to apply supramolecular principles in order to understand the associated forces in many inorganic molecules that include heavy metals for instance gold, platinum, and mercury. Relevant systems will be studied in detail, considering functional aspects such as enhanced coordination of functionalized molecular self-assembly, electronic and optoelectronic properties.  相似文献   

10.
The past few decades of molecular recognition studies have greatly enhanced our knowledge on apolar, ion-dipole, and hydrogen-bonding interactions. However, much less attention has been given to the role that multipolar interactions, in particular those with orthogonal dipolar alignment, play in organizing a crystal lattice or stabilizing complexes involving biological receptors. By using results from database mining, this review attempts to give an overview of types and structural features of these previously rather overlooked interactions. A number of illustrative examples of these interactions found in X-ray crystal structures of small molecules and protein-ligand complexes demonstrate their propensity and thus potential importance for both, chemical and biological molecular recognition processes.  相似文献   

11.
Nucleic acid aptamers have been shown many unique applications as excellent probes in molecular recognition. However, few examples are reported which show that aptamers can be internalized inside living cells for aptamer functional studies and for targeted intracellular delivery. This is mainly due to the limited number of aptamers available for cell-specific recognition, and the lack of research on their extra- and intracellular functions. One of the major difficulties in aptamers' in vivo application is that most of aptamers, unlike small molecules, cannot be directly taken up by cells without external assistance. In this work, we have studied a newly developed and cell-specific DNA aptamer, sgc8. This aptamer has been selected through a novel cell selection process (cell-SELEX), in which whole intact cells are used as targets while another related cell line is used as a negative control. The cell-SELEX enables generation of multiple aptamers for molecular recognition of the target cells and has significant advantages in discovering cell surface binding molecules for the selected aptamers. We have studied the cellular internalization of one of the selected aptamers. Our results show that sgc8 is internalized efficiently and specifically to the lymphoblastic leukemia cells. The internalized sgc8 aptamers are located inside the endosome. Comparison studies are done with the antibody for the binding protein of sgc8, PTK7 (Human protein tyrosine kinase-7) on cell surface. We also studied the internalization kinetics of both the aptamer and the antibody for the same protein on the living cell surface. We have further evaluated the effects of sgc8 on cell viability, and no cytotoxicity is observed. This study indicates that sgc8 is a promising agent for cell-type specific intracellular delivery.  相似文献   

12.
A key paradigm in contemporary research is the use of graphs to represent physical systems, molecular structures, or particularly metal frameworks. Graphs are increasingly widely used in a variety of fields, including the study of quantum and molecular systems, macromolecules and their interactions, socioeconomic and ecological systems, and technical and infra-structural systems. Understanding how these systems function, are robust, and are stable begins with structural characterization. The use of entropies and entropy-like measurements of graphs/structures of molecules/networks is crucial from both a mathematical and physical standpoint. Several entropy measures of graphs have been defined and studied extensively during the last few decades. The current paper is devoted to investigation of distance dependent entropy measures of Poly Propylene Imine (PPI) dendrimers and Zinc Porphyrin dendrimers. The analytical formulae of distance dependent entropy measures have been developed and their patterns have been presented through graphical tools.  相似文献   

13.
Nanoparticulate drug delivery systems offer several advantages over conventional forms of dosing, with polymer nanoparticles prepared from biomaterials being good candidates for use in drug delivery. We selected fluorouracil (5FU) as a model drug because it has been suggested that chitosan might prevent the side effects induced by 5FU. We have exploited the complexation between oppositely charged macromolecules to develop a safe and efficient method of preparation of chitosan bead formulations for use as drug delivery systems. In this study, we examined the effect that the molecular weight of chitosan had on the resulting nanoparticles' properties; the initial concentration of chitosan was held constant, but its molecular weight was decreased through the action of NaNO2. FTIR spectroscopy suggested that no structural change occurred during the depolymerization process. The diameters of the nanoparticles—determined using dynamic light scattering and TEM techniques—decreased as the value of the viscosity of molecular weight (Mv) of chitosan decreased. In addition, we prepared fluorouracil-loaded chitosan nanoparticles and characterized them using NMR spectroscopy. The encapsulation efficiency increased as the value of Mv of chitosan decreased. The particles produced using 55-kDa chitosan had a mean diameter of 70.6 nm and a 66% drug loading.  相似文献   

14.
Various molecular and supramolecular systems have been synthesized and characterized recently to mimic the functions of photosynthesis, in which solar energy conversion is achieved. Artificial photosynthesis consists of light‐harvesting and charge‐separation processes together with catalytic units of water oxidation and reduction. Among the organic molecules, derivatives of BF2‐chelated dipyrromethene (BODIPY), “porphyrin’s little sister”, have been widely used in constructing these artificial photosynthetic models due to their unique properties. In these photosynthetic models, BODIPYs act as not only excellent antenna molecules, but also as electron‐donor and ‐acceptor molecules in both the covalently linked molecular and supramolecular systems formed by axial coordination, hydrogen bonding, or crown ether complexation. The relationships between the structures and photochemical reactivities of these novel molecular and supramolecular systems are discussed in relation to the efficiency of charge separation and charge recombination. Femto‐ and nanosecond transient absorption and photoelectrochemical techniques have been employed in these studies to give clear evidence for the occurrence of energy‐ and electron‐transfer reactions and to determine their rates and efficiencies.  相似文献   

15.
Novel supramolecular coatings that make use of low-molecular weight ditopic monomers with guanine end groups are studied using fluid tapping AFM. These molecules assemble on highly oriented pyrolytic graphite (HOPG) from aqueous solutions to form nanosized banding structures whose sizes can be systematically tuned at the nanoscale by tailoring the molecular structure of the monomers. The nature of the self-assembly in these systems has been studied through a combination of the self-assembly of structural derivatives and molecular modeling. Furthermore, we introduce the concept of using these molecular assemblies as scaffolds to organize functional groups on the surface. As a first demonstration of this concept, scaffold monomers that contain a monomethyl triethyleneglycol branch were used to organize these "functional" units on a HOPG surface. These supramolecular grafted assemblies have been shown to be stable at biologically relevant temperatures and even have the ability to significantly reduce static platelet adhesion.  相似文献   

16.
A new method for the characterization of molecules based on the model approach of molecular surfaces is presented. We use the topographical properties of the surface as well as the electrostatic potential, the local lipophilicity/hydrophilicity, and the hydrogen bond density on the surface for characterization. The definition and the calculation method for these properties are reviewed shortly. The surface is segmented into overlapping patches with similar molecular properties. These patches can be used to represent the characteristic local features of the molecule in a way that is beyond the atomistic resolution but can nevertheless be applied for the analysis of partial similarities of different molecules as well as for the identification of molecular complementarity in a very general sense. The patch representation can be used for different applications, which will be demonstrated in subsequent articles.  相似文献   

17.
Nanoparticles formed from amphiphilic block copolymers can be used as drug delivery vehicles for hydrophilic therapeutics. Poly(ethylene glycol) (PEG)‐peptide copolymers were investigated for their self‐assembling properties and as consequent potential delivery systems. Mono‐ and dihydroxy PEGs were functionalized with a pentavaline sequence bearing Fmoc end groups. The molecular weight of the PEG component was varied to evaluate copolymer size and block number. These di‐ and tri‐block copolymers readily self‐assemble in aqueous solution with critical aggregation concentrations (CACs) of 0.46–16.29 μM. At concentrations above the CAC, copolymer solutions form spherical assemblies. Dynamic light scattering studies indicate these aggregates have a broad size distribution, with average diameters between 33 and 127 nm. The copolymers are comprised β‐conformations that are stable up to 80 °C, as observed by circular dichroism. This peptide secondary structure is retained in solutions up to 50% MeOH as well. The triblock copolymers proved to be the most stable, with copolymers synthesized from 10 kDa PEG having the most stable particles. Loading of carboxyfluorescein at 2–5 mol % shows that these copolymers have the potential to encapsulate hydrophilic drugs for delivery applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Research on bioceramics has evolved from the use of inert materials for mere substitution of living tissues towards the development of third-generation bioceramics aimed at inducing bone tissue regeneration. Within this context hybrid bioceramics have remarkable features resulting from the synergistic combination of both inorganic and organic components that make them suitable for a wide range of medical applications. Certain bioceramics, such as ordered mesoporous silicas, can exhibit different kind of interaction with organic molecules to develop different functions. The weak interaction of these host matrixes with drug molecules confined in the mesoporous channels allows these hybrid systems to be used as controlled delivery devices. Moreover, mesoporous silicas can be used to fabricate three (3D)-dimensional scaffolds for bone tissue engineering. In this last case, different osteoinductive agents (peptides, hormones and growth factors) can be strongly grafted to the bioceramic matrix to act as attracting signals for bone cells to promote bone regeneration process. Finally, recent research examples of organic-inorganic hybrid bioceramics, such as stimuli-responsive drug delivery systems and nanosystems for targeting of cancer cells and gene transfection, are also tackled in this tutorial review (64 references).  相似文献   

19.
Drug delivery systems (DDS) are used to achieve a higher therapeutic effects of a pharmaceutical drug or natural compound in a specific diseased site with minimal toxicological effect and these systems consists of liposomes, microspheres, gels, prodrugs and many. Nanotechnology is a rapidly developing multi-disciplinary science that ensures the fabrication of the polymers to nanometer scale for various medical applications. Uses of biopolymers in DDS ensure the biocompatibility, biodegradability and low immunogenicity over the synthetic ones. Biopolymers such as silk fibroins, collagen, gelatin, albumin, starch, cellulose and chitosan can be easily made into suspension that serve as delivery vehicles for both macro and mini drug molecules. There are various methods such as supercritical fluid extraction, desolvation, electrospraying, spray-drying, layer-by-layer self-assembly, freeze-drying and microemulsion introduced to make these DDS. This drug carrier systems enhance the drug delivery actively and can be used in ocular, transdermal, dental or intranasal delivery systems. This review describes the new trends in nanomaterials based drug delivery systems mainly using biopolymers such as proteins (silk fibroin, collagen, gelatin and albumin) and polysaccharides (chitosan, alginate, cellulose and starch).  相似文献   

20.
Advancements in the field of liposomal drug carriers have culminated in greatly improved delivery properties. An important aspect of this work entails development of designer liposomes for release of contents triggered by environmental changes. The majority of these systems are driven by chemical reactions in the presence of different stimuli. However, a promising new paradigm instead focuses on molecular recognition events as the impetus for content release. In certain cases, these platforms exploit synthetic lipid switches designed to undergo conformational changes upon binding to target ions or molecules that perturb membrane assembly, thereby triggering cargo release. Examples of this approach reported thus far showcase how rational design of lipid switches can result in dramatic changes in lipid assembly properties. These strategies show great promise for opening up new pathophysiological stimuli that can be harnessed for programmed content release in drug delivery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号