首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘丽萱  杨扬  魏志祥 《化学学报》2022,80(7):970-992
手性有机半导体由于其新颖的性质引起了有机光电领域极大的研究兴趣. 将手性引入有机半导体材料不仅可以调控聚集态结构影响载流子输运进而影响光电器件的性能, 而且催生了圆偏振光直接发射与探测材料与器件的产生与发展. 手性材料与圆偏振光之间的相互作用使得其在3D显示、量子通讯、信息存储与处理等领域展示出广泛的应用前景. 本综述总结近年来手性有机光电材料及器件的研究进展, 主要围绕手性对有机半导体材料性质与器件性能的影响展开, 聚焦于手性有机半导体的圆偏振光直接发射与探测等研究, 旨在进一步为手性有机光电子领域的发展提供系统的认识.  相似文献   

2.
[Eu(pda)2]? and [Eu(bda)2]? (pda=1,10‐phenanthroline‐2, 9‐dicarboxylic acid; bda=2,2′ bipyridine 5,5′‐dicarboxylic acid) have an achiral D2d structure in crystals. These complexes exhibit circularly polarized luminescence (CPL) in water containing chiral amino acids. In this work, induced CPL of [Eu(pda)2]? and [Eu(bda)2]? in water solutions containing a mixture of d ‐ and l ‐ amino acids were examined. Plots of glum values of the induced CPL as a function of mol‐fraction of l ‐ and d ‐ arginine reveal that [Eu(pda)2]? favors homo‐association ([Eu(pda)2]?‐(l ‐arginine)2 or [Eu(pda)2]?‐(d ‐arginine)2) over hetero‐association {[Eu(pda)2]?‐(l ‐arginine)?(d ‐arginine)}. This suggests that association of an arginine molecule induces a structural change in [Eu(pda)2]? to promote chiral selective association to another arginine, i.e., homo‐allosteric association. On the other hand, the system of [Eu(pda)2]? with histidine favors hetero‐allosteric association over homo‐association. No allosteric effect is recognized in CPL from [Eu(bda)2]?.  相似文献   

3.
We recently found that [Eu(pda)2]? (pda: 1,10‐phenanthroline‐2,9‐dicarboxylic acid), which has an achiral structure in crystals, exhibits circularly polarized luminescence (CPL) in aqueous solutions containing chiral amino acids such as arginine and histidine. CPL measurements were performed for agar gel, which includes an aqueous solution of [Eu(pda)2]? and chiral arginine or histidine. The spectral shape, concentration, and pH dependences on CPL intensity in the agar gels were very close to those in aqueous solutions, indicating that the CPL of the EuIII complex in the agar gels was induced by mechanism similar to that in aqueous solutions. We performed spatially resolved CPL measurements using a laboratory‐built microscopic CPL spectroscopic system for agar‐gel samples, where d ‐ and l ‐ amino acids were separately dispersed. We successfully recorded CPL imaging maps showing spatial dispersions of d ‐ and l ‐amino acid in the agar gels.  相似文献   

4.
李猛  林伟彬  房蕾  陈传峰 《化学学报》2017,75(12):1150-1163
圆偏振发光不仅能直观地反映手性发光体系的激发态结构信息,而且在3D显示、自旋信息通讯、信息存储与处理、CPL激光、生物探针等领域具有广泛的应用前景.因此,近年来圆偏振发光材料引起了人们越来越多的兴趣与关注,成为有机发光功能材料领域一个新的研究热点.本综述总结近年来关于手性有机小分子圆偏振发光的研究进展,主要围绕具有中心手性、轴手性、面手性和螺旋手性的圆偏振发光有机小分子展开介绍.  相似文献   

5.
具有超分子手性的稀土螺旋体为合成高性能稀土圆偏振发光(CPL)材料提供了结构基础.然而,稀土Ln(Ⅲ)离子较大的半径和不稳定的配位几何构型为合成高光学纯度的稀土螺旋体带来了困难和挑战.本工作通过在双三齿配体端基引入点手性的方式成功构筑了一对儿对映体纯的手性双核三股铕螺旋体,[Eu2(LRR)3](OTf)6和[Eu2(...  相似文献   

6.
This work reports the first observation of circularly polarized electroluminescence (CPEL) in thin films of self-organized oligothiophenes. Four new 1,4-phenylene and 9H-carbazole-based oligothiophenes were ad hoc designed to ensure efficient spontaneous formation of chiral supramolecular order. They were easily synthesized and their chiroptical properties in thin films were measured. Circularly polarized luminescence (CPL) spectra revealed glum in the order of 10−2 on a wide wavelengths range, originating from their self-organized chiral supramolecular organization. These molecules have reasonable properties as organic semiconductors and for this reason they can constitute the active layer of circularly-polarized organic light-emitting diodes (CP-OLEDs). Thus, we could investigate directly their electroluminescence (EL) and CPEL, without resorting to blends, but rather in a simple multilayer device with basic architecture. This is the first example of a CP-OLED with active layer made only of a small organic compound.  相似文献   

7.
This article aims to show the identity of “circularly polarized luminescent active simple organic molecules” as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non‐aggregated) organic molecules able to emit left‐ or right‐circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented.  相似文献   

8.
Molecular motions are closely associated with the behaviors and properties of organic materials. However, monitoring molecular motions is challenging. Herein, a chiral supramolecular system consisting of L-/D-phenylalanine (LPF/DPF) as a chiral inducer and an achiral tetraphenylethene derivative (TPEF) as a molecular rotor has been proposed and explored for real-time discriminating the supramolecular motions by the visualization of circularly polarized luminescence (CPL) signal variations. Derived from the ordered molecular motions of TPEF induced by LPF/DPF, highly organized aggregates have been progressively assembled in a controlled manner with differentiated morphologies, including spherical particles, one-dimensional fibers, and floor-shaped supercrystals. Notably, increasing level of ordered aggregates, in turn, led to quenching emissions, while the CPL signals have been dramatically amplified accompanying by a sharp enhancement of luminescence dissymmetry factors (glum) from nearly 0 to −0.1. The significant amplification of CPL is attributed to the ordered aggregates of supramolecules, leading to the decrease of electric transition dipole moments in supramolecular system. As a result of the chiral supramolecular motions powered by supramolecular crystallization, the supramolecular motions are conveniently discriminated by visual CPL signal variation with an enhancement of glum value from 0 to −0.1 in real time.  相似文献   

9.
The synthesis of chiral C1‐symmetrical copper(I) complexes supported by chiral carbene ligands is described. These complexes are yellow emitters with modest quantum yields. Circularly polarized luminescence (CPL) spectra show a polarized emission band with dissymmetry factors |glum|=1.2×10?3. These complexes are the first reported examples of molecular copper(I) complexes exhibiting circularly polarized luminescence. In contrast with most CPL‐emitting molecules, which possess either helical or axial chirality, the results presented show that simple chiral architectures are suitable for CPL emission and unlock new synthetic possibilities.  相似文献   

10.
Circularly polarized luminescence (CPL) spectra are extremely sensitive to molecular structure. However, conventional CPL measurements are difficult and require expensive instrumentation. As an alternative, we explore CPL using Raman scattering and Raman optical activity (ROA) spectroscopy. The cesium tetrakis(3‐heptafluoro‐butylryl‐(+)‐camphorato) europium(III) complex was chosen as a model as it is known to exhibit very large CPL dissymmetry ratio. The fluorescent bands could be discriminated from true Raman signals by comparison of spectra acquired with different laser excitation wavelengths. Furthermore, the ROA technique enables fluorescence identification by measuring the degree of circularity. The CPL dissymmetry ratio was measured as the ROA circular intensity difference of 0.71, the largest one ever reported. The alternative CPL measurement enhances applications of lanthanides in analytical chemistry and chemical imaging of biological objects.  相似文献   

11.
A field-induced chiral YbIII Single-Molecule Magnet (SMM) displayed an unprecedented near-infrared circularly polarized luminescence (NIR-CPL) in the solid-state. The bridging bis(1,10-phenantro[5,6b])tetrathiafulvalene triad ( L ) allowed an efficient sensitization of the NIR 2F5/22F7/2 emission while the NIR-CPL is associated to the f-f transitions of the YbIII ion bearing chiral β-diketonate derived-camphorate ancillary ligands.  相似文献   

12.
The circularly polarized luminescence (CPL) switching is of significant interest for applications in security technologies and sensing devices. Small organic molecules (SOMs) show several advantages over metal complexes, supramolecular assemblies, and polymers. Therefore, the recent progress on the CPL switching in SOMs is here reviewed. The results are summarized based on the strategies used to tune factors that influence the emission properties, and thus, to realize CPL switching. The strategies that have been adopted include promoting the excimer formation of fluorescent units, changing the conformation of fluorophores, tuning the electronic structure of the π-skeleton/substituent, and modulating the intramolecular charge-transfer dynamics.  相似文献   

13.
A variety of carbazolyl-appended Schiff bases were readily synthesized from 1-formylcarbazoles and aniline derivatives. Boron complexation of the resulting ligands allowed for facile preparation of new carbazole-based BODIPY analogues showing solid-state fluorescence. Furthermore, some dyes were converted into chiral compounds through the Et2AlCl-mediated incorporation of a binaphthyl unit. The chiral dyes showed aggregation-induced fluorescence and circularly polarized luminescence (CPL) with the ΦF and glum of up to 0.22 and −3.5×10−3, respectively, in the solid state. The solid-state fluorescence and CPL were well characterized by the crystal packing analyses and DFT calculations.  相似文献   

14.
Naphthalenediimides (NDIs) have been extensively studied due to their tunable luminescent properties. However, generally, the monomers or aggregates of non-core substituted NDIs exhibit low fluorescence quantum yields (ΦFL<10 %) in the solid state, which limit their applications as light-emitting materials and render their chiral species unsuitable for circularly polarized luminescence (CPL). Herein, a series of non-core substituted chiral NDIs that exhibit high luminous efficiencies (ΦFL up to 56.8 % for racemate and 36.5 % for enantiomer) and a strong CPL behavior in the solid state is reported. These significant improvements are attributed to the unique molecular conformation of the chiral NDIs and the formation of distinctive discrete dimers. The structures of the NDIs were significantly simpler and more accessible than those of other NDIs. The findings evidence that non-core substituted NDIs can exhibit strong fluorescence in the solid state and provide a new pathway to improve photophysical properties of NDIs.  相似文献   

15.
Chiral macrocyclic dimers, trimers, and tetramers composed of paraphenylene and tethered binaphthyl were synthesized, and their molecular structures and chiroptical properties were investigated. X-ray analysis and theoretical calculations revealed that multiple twisted molecular structures – dimers, trimers, and tetramers – adopt figure-of-eight, Möbius triangle, and concave rectangle structures, respectively. These homologues have large ϵ values in their UV-vis absorption spectra because of the π-conjugation of the naphthalene-phenylene-naphthalene frameworks. Owing to the shape-persistent ring structure and tethering with −OCH2CH2O−, high fluorescence quantum yields and a relatively high dissymmetry factor gCPL in circularly polarized luminescence (CPL) spectra were achieved. This results in CPL brightness (BCPL) of over 100, which is greater than that of the conventional organic CPL dye.  相似文献   

16.
A curved stereogenic [6]paraphenylene ([6]PP), anchoring a chiral binaphthyl scaffold at 7,7’-positions, was prepared and investigated for its properties as a solid-state circularly polarized luminescence (CPL) dye. X-ray analysis revealed a helically twisted structure of PP units induced by axial chirality of binaphthyl framework. The curved [6]PP exhibits fluorescence in powder and polymethyl methacrylate (PMMA) film as well as solution. A significant increase in quantum yield was observed for a non-fluid PMMA film owing the suppression of the molecular motion. The gCPL values of the dye in solution and as PMMA film were almost the same (4.3–4.4×10−3) and lager than that in powder. TD-DFT calculations in the excited state suggest that the exciton can be delocalized into a twisted PP unit to produce a larger magnetic transition dipole moment.  相似文献   

17.
The synthesis and chiroptical properties of a series of enantiomerically pure, C2-symmetrical carbo[6]helicene dimers are reported. Two helicene cores are connected through a buta-1,3-diyne-1,4-diyl linker or a heteroaromatic bridge and bear arylethynyl substituents at their 15-positions. This ensures the possibility of extended electronic communication throughout the whole molecule. The new chromophores exhibit intense ECD spectra with strong bands in the UV/Vis region well above 400 nm. The anisotropy factor gabs (defined as Δϵ/ϵ) reaches values up to 0.047, which are unusually large for single organic molecules. They also display blue fluorescence, with good quantum yields (Φf∼0.25). The emitted light is circularly polarized to an outstanding extent: in some cases, the luminescence dissymmetry factor glum=2(ILIR)/(IL+IR) attains values of |0.025|. To the best of our knowledge, such values are among the highest ever reported for non-aggregated organic fluorophores.  相似文献   

18.
Helically chiral N,N,O,O‐boron chelated dipyrromethenes showed solution‐phase circularly polarized luminescence (CPL) in the red region of the visible spectrum (λem(max) from 621 to 663 nm). The parent dipyrromethene is desymmetrised through O chelation of boron by the 3,5‐ortho‐phenolic substituents, inducing a helical chirality in the fluorophore. The combination of high luminescence dissymmetry factors (|glum| up to 4.7 ×10?3) and fluorescence quantum yields (ΦF up to 0.73) gave exceptionally efficient circularly polarized red emission from these simple small organic fluorophores, enabling future application in CPL‐based bioimaging.  相似文献   

19.
Materials exhibiting excitation wavelength‐dependent photoluminescence (Ex‐De PL) in the visible region have potential applications in bioimaging, optoelectronics and anti‐counterfeiting. Two multifunctional, chiral [Au(NHC)2][Au(CN)2] (NHC=(4R,5R)/(4S,5S)‐1,3‐dimethyl‐4,5‐diphenyl‐4,5‐dihydro‐imidazolin‐2‐ylidene) complex double salts display Ex‐De circularly polarized luminescence (CPL) in doped polymer films and in ground powder. Emission maxima can be dynamically tuned from 440 to 530 nm by changing the excitation wavelength. The continuously tunable photoluminescence is proposed to originate from multiple emissive excited states as a result of the existence of varied AuI???AuI distances in ground state. The steric properties of the NHC ligand are crucial to the tuning of AuI???AuI distances. An anti‐counterfeiting application using these two salts is demonstrated.  相似文献   

20.
Two perylene diimide (PDI) enantiomers ( d/l ‐PDI ) incorporating the d /l ‐alanine moiety have been designed and synthesized. d/l ‐PDI in chloroform displays bright‐yellow fluorescence that is redshifted to orange‐red when the solvent contains a methanol fraction of 99 vol %. No circular dichroism (CD) or circularly polarized luminescence (CPL) signals were observed for d/l ‐PDI enantiomers in CHCl3. Interestingly, the d/l ‐PDI enantiomers exhibit clear mirror‐image Cotton effects and CPL emission in the aggregate state. The optical anisotropy factor (glum) is as high as 0.02 at fm=99 %, which can be attributed to self‐assembly through intermolecular π–π interactions in the aggregate state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号