首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combined effect of a vertical AC electric field and the boundaries on the onset of Darcy–Brinkman convection in a dielectric fluid saturated porous layer heated either from below or above is investigated using linear stability theory. The isothermal bounding surfaces of the porous layer are considered to be either rigid or free. It is established that the principle of exchange of stability is valid irrespective of the nature of velocity boundary conditions. The eigenvalue problem is solved exactly for free–free (F/F) boundaries and numerically using the Galerkin technique for rigid–rigid (R/R) and lower-rigid and upper-free (F/R) boundaries. It is observed that all the boundaries exhibit qualitatively similar results. The presence of electric field is emphasized on the stability of the system and it is shown that increasing the AC electric Rayleigh number R ea is to facilitate the transfer of heat more effectively and to hasten the onset of Darcy–Brinkman convection. Whereas, increase in the ratio of viscosities Λ and the inverse Darcy number Da −1 is to delay the onset of Darcy–Brinkman electroconvection. Besides, increasing R ea and Da −1 as well as decreasing Λ are to reduce the size of convection cells.  相似文献   

2.
Mixed convection flow in a two-sided lid-driven cavity filled with heat-generating porous medium is numerically investigated. The top and bottom walls are moving in opposite directions at different temperatures, while the side vertical walls are considered adiabatic. The governing equations are solved using the finite-volume method with the SIMPLE algorithm. The numerical procedure adopted in this study yields a consistent performance over a wide range of parameters that were 10−4 ≤ Da ≤ 10−1 and 0 ≤ Ra I ≤ 104. The effects of the parameters involved on the heat transfer characteristics are studied in detail. It is found that the variation of the average Nusselt number is non-linear for increasing values of the Darcy number with uniform or non-uniform heating condition.  相似文献   

3.
A detailed numerical study of laminar forced convection in a porous channel which contains a fibrous medium saturated with a power-law fluid was performed. Hydrodynamic and heat transfer results are presented for a configuration that has uniform heat flux or uniform temperature heating at the walls. The flow in the porous medium was modeled using the modified Brinkman-Forchheimer-extended Darcy model for power law fluids in which the non-Darcy effects of inertia and boundary were considered. Parametric studies were conducted to examine the effects of Darcy number, power law index, inertia parameter and Prandtl number. The results indicate that when the power law index is decreased, the velocity gradient near the walls increases but these effects are reduced gradually as the Darcy number decreases until the Darcy regime (Da≤10−6) is reached in which case the effects of power law index become negligible. As the power law index is decreased, the thermal boundary layer thickness decreases significantly only in the non-Darcy regime. Consequently, as the power law index decreases, the fully developed Nusselt number increases considerably in the non-Darcy regime whereas in the Darcy regime the change in Nusselt number is very small. As the Prandtl number increases, the local Nusselt number increases and this effect is more significant for shear thinning fluids (n<1.0). Received on 2 March 1998  相似文献   

4.
The free convective flow and heat transfer, within the framework of Boussinesq approximation, in an anisotropic fluid filled porous rectangular enclosure subjected to end-to-end temperature difference have been investigated using Brinkman extended non-Darcy flow model. The studies involve simultaneous consideration of hydrodynamic and thermal anisotropy. The flow and temperature fields in general are governed by, Ra, the Rayleigh number, AR, the aspect ratio of the slab, K*, the permeability ratio and k*, the thermal conductivity ratio, and Da, Darcy number. Numerical solutions employing the successive accelerated replacement (SAR) scheme have been obtained for 100 ≤ Ra ≤ 1000, 0.5 ≤ AR ≤ 5, 0.5 ≤ K* ≤ 5, 0.5 ≤ k* ≤ 5, and 0 ≤ Da ≤ 0.1. It has been found that [`(Nu)]{\overline {Nu}}, average Nusselt number increases with increase in K* and decreases as k* increases. However, the magnitude of the change in [`(Nu)]{\overline {Nu}} depends on the parameter Da, characterizing the Brinkman extended non-Darcy flow.  相似文献   

5.
Natural convection flow in a differentially heated square enclosure filled with porous matrix with a solid adiabatic thin fin attached at the hot left wall is studied numerically. The Brinkman–Forchheimer-extended Darcy model is used to solve the momentum equations, in the porous medium. The numerical investigation is done through streamlines, isotherms, and heat transfer rates. A parametric study is carried out using the following parameters: Darcy number (Da) from 10−4 to 10−2, dimensionless thin fin lengths (L p) 0.3, 0.5, and 0.7, dimensionless positions (S p) 0.25, 0.5, and 0.75 with Prandtl numbers (Pr) 0.7 and 100 for Ra = 106. For Da = 10−3 and Pr = 0.7, it is observed that there is a counter clock-wise secondary flow formation around the tip of the fin for S p = 0.5 for all lengths of L p. Moreover when Da = 10−2 the secondary circulation behavior has been observed for S p = 0.25 and 0.75 and there is another circulation between the top wall and the fin that is separated from the primary circulation. However, these secondary circulations features are not observed for Pr = 100. It is also found that the average Nusselt number decreases as the length of the fin increases for all locations. However, the rate of decrease of average Nusselt number becomes slower as the location of fin moves from the bottom wall to the top wall. The overall heat transfer rate can be controlled with a suitable selection of the fin location and length.  相似文献   

6.
Numerical modeling of flow through vuggy porous media, mainly vuggy carbonates, is a challenging endeavor. Firstly, because the presence of vugs can significantly alter the effective porosity and permeability of the medium. Secondly, because of the co‐existence of porous and free flow regions within the medium and the uncertainties in defining the exact boundary between them. Traditionally, such heterogeneous systems are modeled by the coupled Darcy–Stokes equations. However, numerical modeling of flow through vuggy porous media using coupled Darcy–Stokes equations poses several numerical challenges particularly with respect to specification of correct interface condition between the porous and free‐flow regions. Hence, an alternative method, a more unified approach for modeling flows through vuggy porous media, the Stokes–Brinkman model, is proposed here. It is a single equation model with variable coefficients, which can be used for both porous and free‐flow regions. This also makes the requirement for interface condition redundant. Thus, there is an obvious benefit of using the Stokes–Brinkman equation, which can be reduced to Stokes or Darcy equation by the appropriate choice of parameters. At the same time, the Stokes–Brinkman equation provides a smooth transition between porous and free‐flow region, thereby taking care of the associated uncertainties. A numerical treatment for upscaling Stokes–Brinkman model is presented as an approach to use Stokes–Brinkman model for multi‐phase flow. Numerical upscaling methodology is validated by analyzing the error norm for numerical pressure convergence. Stokes–Brinkman single equation model is tested on a series of realistic data sets, and the results are compared with traditional coupled Darcy–Stokes model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
An adaptation of the classical Graetz methodology is applied to investigate the thermal development of forced convection in a parallel plate channel or a circular tube filled by a porous medium saturated by a rarefied gas, with walls held at constant heat flux. The Brinkman model is employed. The analysis leads to expressions for the local Nusselt number Nu as functions of the dimensionless longitudinal coordinate and the Darcy number. It is found that an increase in the velocity slip coefficient generally increases Nu by a small or moderate amount (but the circular tube at large Darcy number is an exception) while an increase in the temperature slip coefficient reduces Nu by a more substantial amount. These trends are uniform as the longitudinal coordinate varies.  相似文献   

8.
Laminar forced convection of gaseous slip flow in a circular micro-channel filled with porous media under local thermal equilibrium condition is studied numerically using the finite difference technique. Hydrodynamically fully developed flow is considered and the Darcy–Brinkman–Forchheimer model is used to model the flow inside the porous domain. The present study reports the effect of several operating parameters (Knudsen number (Kn), Darcy number (Da), Forchhiemer number (Γ), and modified Reynolds number ) on the velocity slip and temperature jump at the wall. Results are given in terms of the velocity distribution, temperature distribution, skin friction , and the Nusselt number (Nu). It is found that the skin friction is increased by (1) decreasing Knudsen number, (2) increasing Darcy number, and (3) decreasing Forchheimer number. Heat transfer is found to (1) decrease as the Knudsen number, or Forchheimer number increase, (2) increase as the Peclet number or Darcy number increase.  相似文献   

9.
Natural convection in a fluid saturated porous medium has been numerically investigated using a generalized non-Darcy approach. The governing equations are solved by using Finite Volume approach. First order upwind scheme is employed for convective formulation and SIMPLE algorithm for pressure velocity coupling. Numerical results are presented to study the influence of parameters such as Rayleigh number (106 ≤Ra ≤108), Darcy number (10−5Da ≤ 10−2), porosity (0.4 ≤ ɛ ≤ 0.9) and Prandtl number (0.01 ≤ Pr ≤ 10) on the flow behavior and heat transfer. By combining the method of matched asymptotic expansions with computational fluid dynamics (CFD), so called asymptotic computational fluid dynamics (ACFD) technique has been employed to generate correlation for average Nusselt number. The technique is found to be an attractive option for generating correlation and also in the analysis of natural convection in porous medium over a fairly wide range of parameters with fewer simulations for numerical solutions.  相似文献   

10.
Most porous solids are inhomogeneous and anisotropic, and the flows of fluids taking place through such porous solids may show features very different from that of flow through a porous medium with constant porosity and permeability. In this short paper we allow for the possibility that the medium is inhomogeneous and that the viscosity and drag are dependent on the pressure (there is considerable experimental evidence to support the fact that the viscosity of a fluid depends on the pressure). We then investigate the flow through a rectangular slab for two different permeability distributions, considering both the generalized Darcy and Brinkman models. We observe that the solutions using the Darcy and Brinkman models could be drastically different or practically identical, depending on the inhomogeneity, that is, the permeability and hence the Darcy number.  相似文献   

11.
In this paper, a detailed investigation on the flow past a porous covering cylinder is presented through the lattice Boltzmann method. The Brinkman‐Forchheimer‐extended Darcy model is adopted for the entire flow field with the solid, fluid, and porous medium. The effects of several parameters, such as porous layer thickness, Darcy number, porosity, and Reynolds number on flow field are discussed. Compared with the case of a solid cylinder, the present work shows that the porous layer may play an important role on the flow, the lift and drag force exerted on the cylinder. The numerical results indicate that the maximal drag coefficient Cd and maximal amplitude of lift coefficient Cl exist at certain Darcy number which is in the range of 10?6–10?2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This article is devoted to combined convection heat transfer of nanofluids through a vertical channel filled with a homogeneous and isotropic porous medium. The flow is assumed to be fully developed and the “Brinkman extended Darcy” model is used for the flow in the porous media and “clear compatible” viscous dissipation model is considered. Also the model utilized for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing momentum, energy, and nanopartices volume fraction equations are solved both analytically and numerically. The effects of the influential dimensionless parameters such as Brownian and thermophoresis parameters, mixed convection parameter (Gr/Re), Brinkman, Darcy and Lewis numbers on dimensionless velocity and temperature distributions and pressure drop are studied. Also, the results of the Nusselt number for the both left and right walls are presented and discussed.  相似文献   

13.
In this paper, the lattice Boltzmann method is used to study the Prandtl number effect on flow structure and heat transfer rates in a magnetohydrodynamic flow mixed convection in a lid‐driven cavity filled with a porous medium. The right and left walls are at constant but different temperatures (θh and θc), while the other walls are adiabatic. Gallium and salt water (0.02 < Pr < 13.4) are used as samples of the electroconducting fluids in the cavity. Typical sets of streamlines and isotherms are presented to analyze the flow patterns set up by the competition among the forced flow created by the lid‐driven wall, the buoyancy force of the fluid and the magnetic force of the applied magnetic field. Mathematical formulations in the porous media were constructed based on the Brinkman–Forchheimer model, while the multidistribution‐function model was used for the magnetic field effect. Numerical results were obtained and the effects of the Prandtl number and the other effective parameters such as Richardson, Hartman, and Darcy numbers were investigated. It was found that the fluid fluctuations within the cavity were reduced by increasing the Hartman number. A similar pattern was observed for the Darcy number reduction. Heat transfer was essentially dominated by the conduction for the low Prandtl number and forced convection dominated as the Prandtl number increased. Also, the average Nusselt number was raised by increasing the Prandtl number. It was discovered that a remarkable heat transfer enhancement of up to 28% could be reached by increasing the Prandtl number (from 0.02 to 13.4) at constant Richardson and Darcy numbers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
An analytical study of fluid flow and heat transfer in a composite channel is presented. The channel walls are maintained at different constant temperatures in such a way that the temperatures do not allow for free convection. The upper plate is considered to be moving and the lower plate is fixed. The flow is modeled using Darcy–Lapwood–Brinkman equation. The viscous and Darcy dissipation terms are included in the energy equation. By applying suitable matching and boundary conditions, an exact solution has been obtained for the velocity and temperature distributions in the two regions of the composite channel. The effects of various parameters such as the porous medium parameter, viscosity ratio, height ratio, conductivity ratio, Eckert number, and Prandtl number on the velocity and temperature fields are presented graphically and discussed.  相似文献   

15.
A perturbation analysis is carried out to the second order to give effective equations for Darcy–Brinkman flow through a porous channel with slightly corrugated walls. The flow is either parallel or normal to the corrugations, and the corrugations of the two walls are either in phase or half-period out of phase. The present study is based on the assumptions that the corrugations are periodic sinusoidal waves of small amplitude, and the channel is filled with a sparse porous medium so that the flow can be described by the Darcy–Brinkman model, which approaches the Darcian or Stokes flow limits for small or large permeability of the medium. The Reynolds number is also assumed to be so low that the nonlinear inertia can be ignored. The effects of the corrugations on the flow are examined, quantitatively and qualitatively, as functions of the flow direction, the phase difference, and the wavelength of the corrugations, as well as the permeability of the channel. It is found that the corrugations will have greater effects when it is nearer the Stokes’ flow limit than the Darcian flow limit, and when the wavelength is shorter. For the same wavelength and phase difference, cross flow is more affected than longitudinal flow by the corrugations. Opposite effects can result from 180° out-of-phase corrugations, depending on the flow direction, the wavelength, as well as the permeability.  相似文献   

16.
Al-Hadhrami  A. K.  Elliott  L.  Ingham  D. B.  Wen  X. 《Transport in Porous Media》2001,45(2):281-300
The present analysis relates to the study of the full two-dimensional Brinkman equation representing the fluid flow through porous medium. The steady, incompressible fluid flow, with a negligible gravitational force, is constrained to flow in an infinitely long channel in which the height assumes a series of piecewise constant values. The control volume method is used to solve the Brinkman equation which involves the parameter, =/Da, where Da is the Darcy number and is the ratio of the fluid viscosity f to the effective viscosity . An analytical study in the fully developed section of the composite channel is presented when the channel is of constant height and composed of several layers of porous media, each of uniform porosity. In the fully developed flow regime the analytical and numerical solutions are graphically indistinguishable. A geometrical configuration involving several discontinuities of channel height, and where the entry and exit sections are layered, is considered and the effect of different permeabilities is demonstrated. Further, numerical investigations are performed to evaluate the behaviour of fluid flow through regions which mathematically model some geological structures of various sizes, positions and permeability, for example a fault or a fracture, where the outlet channel is offset at different levels. The effect on the overall pressure gradient is also considered.  相似文献   

17.
This paper presents a boundary perturbation method of the Brinkman-extended Darcy model to investigate the flow in corrugated microannuli cylindrical tubes with slip surfaces. The stationary random model is used to mimic the surface roughness of the cylindrical walls. The tube is filled with a porous medium. We shall consider the two cases where corrugations are either perpendicular or parallel to the flow, and particular attention is given to the effect of the phase shift. The effects of the corrugations on the flow rate and pressure gradient are investigated as functions of wavelength, the permeability of the medium, the radius ratio and the slip parameter. Particular surface roughnesses are examined as special cases of stationary random surface. It is found that the effect of the partial slip is significant on the corrugation functions. The limiting cases of Stokes and Darcy’s flows and no-slip case are discussed.  相似文献   

18.
The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to be homogeneous, incompressible,and Newtonian. Analytical solutions are constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability,Darcy velocity, and slip parameter on the axial velocity, slip velocity, and shear stress are discussed in detail. It is shown that the Hartmann number, Darcy velocity, porous parameter, and slip parameter play a vital role in altering the flow and in turn the shear stress.  相似文献   

19.
A numerical study of mixed convection in a vertical channel filled with a porous medium including the effect of inertial forces is studied by taking into account the effect of viscous and Darcy dissipations. The flow is modeled using the Brinkman–Forchheimer-extended Darcy equations. The two boundaries are considered as isothermal–isothermal, isoflux–isothermal and isothermal–isoflux for the left and right walls of the channel and kept either at equal or at different temperatures. The governing equations are solved numerically by finite difference method with Southwell–Over–Relaxation technique for extended Darcy model and analytically using perturbation series method for Darcian model. The velocity and temperature fields are obtained for various porous parameter, inertia effect, product of Brinkman number and Grashof number and the ratio of Grashof number and Reynolds number for equal and different wall temperatures. Nusselt number at the walls is also determined for three types of thermal boundary conditions. The viscous dissipation enhances the flow reversal in the case of downward flow while it counters the flow in the case of upward flow. The Darcy and inertial drag terms suppress the flow. It is found that analytical and numerical solutions agree very well for the Darcian model. An erratum to this article is available at .  相似文献   

20.
In this study, we develop a non-primitive boundary integral equation (BIE) method for steady two-dimensional flows of an incompressible Newtonian fluids through porous medium. We assume that the porous medium is isotropic and homogeneous, and use Brinkman equation to model the fluid flow. First, we present BIE method for 2D Brinkman equation in terms of the non-primitive variables namely, stream-function and vorticity variables. Subsequently, a test problem namely, the lid-driven porous cavity over a unit square domain is presented to assert the accuracy of our BEM code. Finally, we discuss an application of our proposed method to flows through porous wavy channel, which is a problem of significant interest in the micro-fluidics, biological domains and groundwater flows. We observe that the rate of convergence (\(R_{c}\)) increases with increasing Darcy number. For low Darcy number streamlines follow the curvature of the wavy-walled channel and no circulation occurs irrespective of the wave–amplitude, while for high Darcy number the flow circulation occurs near the crest of the wavy-walled channel, when the wave–amplitude is large enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号