首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thiourea-based hydrogen-bond forming ionophore 2, alpha,alpha'-bis(N'-p-nitrophenylthioureylene)-m-xylene, is synthesized and investigated by using ion transfer polarography for the facilitated transfers of H2PO4-, HPO42- and Cl- across the nitrobenzene-water interface. Bis-thiourea 2 has a significant ability to assist H2PO4- transfer across the interface whereas its counterpart, N-(p-nitrophenyl)-N'-propylthiourea (ionophore 3), cannot facilitate the transfer of this hydrophilic anion. The H2PO4- transfer assisted by 2 is based on the formation of a 2:1 complex between H2PO4- and ionophore, and the transfer reaction is more stable by over -12 kJ mol(-1) than the case of 3. The stabilization of the H2PO4- transfer for 2 is even stronger by -11 kJ mol(-1) than that for bis-thiourea 1, 2,7-di-t-butyl-4,5-bis(N'-butylthioureylene)-9,9-dimethylxanthene, which forms a 1:1 complex through the formation of four hydrogen bonds. Bis-thiourea 2 is also able to facilitate transfers of HPO42- and Cl- by the formation of 1:1 complex. As compared to bis-thiourea 1, HPO42- transfer by 2 is significantly stabilized by -27 to -31 kJ mol(-1) while the stabilization of the Cl- transfer is relatively moderate (-6.1 kJ mol(-1)). These binding properties of bis-thiourea 2 are discussed for the design of phosphate-selective ionophores for use in two-phase distribution systems such as ion-selective electrodes.  相似文献   

2.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   

3.
The transfer of F- ion assisted by an organometallic complex cation tetraphenylantimony (TPhSb+) across the polarized nitrobenzene / water (NB / W) interface has been studied by means of ion-transfer voltammetry. A well-defined voltammetric wave was observed within the potential window at the NB / W interface when tetraphenylantimony tetrakis(4-chlorophenyl) borate and F- ion were present in NB and W, respectively. The voltammogram can be interpreted as being due to the reversible transfer of F- ion assisted by the formation of the TPhSbF complex through the coordination of F- to Sb atom in NB. The formal formation constant of TPhSbF in NB has been determined to be 10(1.95 +/- 0.2 M(-1). No voltammetric wave due to the TPhSb(+)-assisted transfer of other anions such as Cl-, Br, I-, NO3-, CH3COO- and H2PO4(-) ions has been observed within the potential window.  相似文献   

4.
A full account of a chemical system possessing features that mimic the reactivity aspects of tyrosinase is presented. Using dinucleating ligands with a m-xylyl spacer three new dicopper(I) complexes have been synthesized and their reactivity with dioxygen investigated. The six-membered chelate ring forming ligands provide only two nitrogen coordinations to each copper. The complexes [Cu(I)(2)L(CH(3)CN)(2)]X(2) (X = ClO(4)(-) (1a), SbF(6)(-) (1b)) and [Cu(I)(2)(L-NO(2))(CH(3)CN)(2)][SbF(6)](2) (1c) [L = alpha,alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; L-NO(2) = para-nitro derivative of L] have been characterized by IR and (1)H NMR spectroscopy. The reaction of O(2) with 1a-c in CH(2)Cl(2) or THF is instantaneous and causes stoichiometric xylyl hydroxylation reactions producing phenol products. Thus 1a produces phenoxo-/hydroxo-bridged product [Cu(II)(2)(L-O)(OH)][ClO(4)](2) (2a). The existence of putative peroxo-dicopper(II) species could not be detected even at -80 degrees C. A trend is observed for the extent of aromatic ring hydroxylation (298 K): CH(3)CN approximately DMF > CH(3)OH > CH(2)Cl(2). Cyclic voltammetric experiment of 1a in DMF reveals an appreciably low redox potential (E(1/2) = -0.26 V vs SCE) for the Cu(II)(2)/Cu(I)(2) redox process. Variable-temperature (25-300 K) magnetic susceptibility measurements establish that the copper(II) centers in 2a and the dihydroxo-bridged complex [Cu(II)(2)L'(OH)(2)][ClO(4)](2) (2b) [formed due to an impurity (L') present during the synthesis of L following Method A; L' = bis[alpha,alpha'-bis(N-methyl-N-(2-pyridylethyl)amino)-m-xylene]methylamine] are antiferromagnetically coupled, with 2a considerably more coupled than 2b. Reaction of 1a with O(2) in CH(2)Cl(2) (298 K) produces an additional unhydroxylated product of composition [Cu(II)(2)L(OH)(OH(2))][ClO(4)](3).2H(2)O.0.5HCl (3a). In agreement with its proposed hydroxo-/aquo-bridged structure, 3a is weakly antiferromagnetically coupled. In CH(3)CN solution, 3a rearranges to generate a doubly hydroxo-bridged species [Cu(II)(2)L(OH)(2)](2+). Using a solution-generated dicopper(I) complex of a closely similar ligand (L' ') providing five-membered chelate ring, the reactivity toward dioxygen was also investigated. It produces only an irreversibly oxidized product of composition Cu(II)(2)L' '(OH)(ClO(4))(3)(H(2)O)(2) (3b) (L' ' = alpha,alpha'-bis[N-methyl-N-(2-pyridylmethyl)amino]-m-xylene). For 3b the copper(II) centers are almost uncoupled.  相似文献   

5.
The potential and limits of hydrogen-bonding ionophores and their use in chemical sensors are discussed. Several hydrogen-bonding bis-thiourea ionophores have been found to complex inorganic anions, among them most strongly H2PO4-. Using such ionophores, ion-selective electrodes for chloride and sulfate have been developed. Furthermore, hosts that bind nucleotides with up to five hydrogen bonds have been synthesized. They have been applied in nucleotide selective electrodes, optodes and voltammetric sensors mimicking ion channels.  相似文献   

6.
用循环伏安法研究了2,2’-联喹啉推动Cu~(2+)在水/硝基苯界面的转移,提出了配合转移机理,并研究了配合反应过程的动力学,测定了Cu~(2+)和2,2’-联喹啉形成的1:2配合物的界面热力学参数和配合物的形成速率常数k.  相似文献   

7.
A strontium Schiff's base complex (SS) can be used as a suitable ionophore to prepare a sulfate-selective PVC-based membrane electrode. The use of oleic acid (OA) and hexadecyltrimethylammonium bromide (HTAB), as additives, and nitrobenzen (NB), dibutyl phthalate (DBP) and benzyl acetate (BA) as solvent mediators, were investigated. The best performance was observed with a membrane composition PVC: NB: SS: HTAB of 30%: 62%: 5%: 3% ratio. The resulting sensor works well over a wide concentration range (1.0 x 10(-2)-1.0 x 10(-6) M) with a Nernstian slope of -29.2 mV per decade of sulfate activity over a pH range 4.0-7.0. The limit of detection of the electrode is 5 x 10(-7) M. The proposed sensor shows excellent discriminating ability toward SO4(2-) ions with regard to many anions. It has a fast response time of about 15 s. The membrane electrode was used to the determination of zinc in zinc sulfate tablets. The sensor was also used as an indicator electrode in the potentiometric titration of SO4(2-) against barium ion.  相似文献   

8.
Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd(2+) was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd(2+). The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg(-1)) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4±0.6 mV decade(-1) of activity for Cd(2+) ions and a working concentration range of 1.6×10(-6)-1.0×10(-2)M. The sensor has a fast response time of 10s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed as a probe for determining Cd(2+) from the oxidation of CdS QDs solution and the real treatment waste water sample with excellent results.  相似文献   

9.
A series of ligands containing linked 1,4,7-triazacyclononane macrocycles are studied for the preparation of dinuclear Zn(II) complexes including 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (L2OH), 1,5-bis(1,4,7-triazacyclonon-1-yl)pentane (L3), 2,9-bis(1-methyl-1,4,7-triazacyclonon-1-yl)-1,10-phenanthroline (L4), and alpha,alpha'-bis(1,4,7-triazacyclonon-1-yl)-m-xylene (L5). The titration of these ligands with Zn(NO(3))(2) was monitored by (1)H NMR. Each ligand was found to bind two Zn(II) ions with a very high affinity at near neutral pH under conditions of millimolar ligand and 2 equiv of Zn(NO(3))(2). In contrast, a stable mononuclear complex was formed in solutions containing 5.0 mM L2OH and 1 equiv of Zn(NO(3))(2). (1)H and (13)C NMR spectral data are consistent with formation of a highly symmetric mononuclear complex Zn(L2OH) in which a Zn(II) ion is sandwiched between two triazacyclononane units. The second-order rate constant k(Zn) for the cleavage of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP) at pH 7.6 and 25 degrees C catalyzed by Zn(2)(L2O) is 120-fold larger than that for the reaction catalyzed by the closely related mononuclear complex Zn(L1) (L1 = 1,4,7-triazacyclononane). By comparison, the observation that the values of k(Zn) determined under similar reaction conditions for cleavage of HPNP catalyzed by the other Zn(II) dinuclear complexes are only 3-5-fold larger than values of k(Zn) for catalysis by Zn(L1) provides strong evidence that the two Zn(II) cations in Zn(2)(L2O) act cooperatively in the stabilization of the transition state for cleavage of HPNP. The extent of cleavage of an oligoribonucleotide by Zn(L1), Zn(2)(L5), and Zn(2)(L2O) at pH 7.5 and 37 degrees C after 24 h incubation is 4,10, and 90%. The rationale for the observed differences in catalytic activity of these dinuclear Zn(II) complexes is discussed in terms of the mechanism of RNA cleavage and the structure and speciation of these complexes in solution.  相似文献   

10.
The facilitated transfer of alkali metal ions (Na+, K+, Rb+, and Cs+) by 25,26,27,28‐tetraethoxycarbonylmethoxy‐thiacalix[4]arene across the water/1,2‐dichloroethane interface was investigated by cyclic voltammetry. The dependence of the half‐wave transfer potential on the metal and ligand concentrations was used to formulate the stoichiometric ratio and to evaluate the association constants of the complexes formed between ionophore and metal ions. While the facilitated transfer of Li+ ion was not observed across the water/1,2‐dichloroethane interface, the facilitated transfers were observed by formation of 1 : 1 (metal:ionophore) complex for Na+, K+, and Rb+ ions except for Cs+ ion. In the case of Cs+ a 1 : 2 (metal:ionophore) complex was obtained from its special electrochemical response to the variation of ligand concentrations in the organic phase. The logarithms of the complex association constants, for facilitated transfer of Na+, K+, Rb+, and Cs+, were estimated as 6.52, 7.75, 7.91 (log β1°), and 8.36 (log β2°), respectively.  相似文献   

11.
Groups of dioxadicarboxylic diamides, which were developed as potential ionophores for inorganic cations, were found to act as ionophores for a stimulant, phentermine. Especially, N,N-dioctadecyl-N',N'-dipropyl-3,6-dioxaoctanediamide, which was originally developed as a lead ionophore and is commercially available from Fluka as lead ionophore I, was suitable for making a phentermine-selective electrode. The electrode constructed using this ionophore and bis(2-ethylhexyl) sebacate as a solvent mediator in a poly(vinyl chloride) membrane matrix discriminated between phentermine and analogous compounds more effectively than an electrode based on dibenzo-18-crown-6, a representative ionophore for organic ammonium ions. Moreover, the present electrode showed remarkably little interference by inorganic cations, such as Na+ and K+, as well as lipophilic quaternary ammonium ions including (C2H5)4N+ and (C3H7)4N+. The electrode exhibited a near-Nernstian response to phentermine in the concentration range of 2 x 10(-6) to 1 x 10(-2) M with a slope of 54.8 mV per concentration decade in 0.1 M MgCl2. The lower limit of detection was 7 x 10(-7) M. This electrode was applied to determine phentermine in a cationic-exchange resin complex of this stimulant, which is the general dosage form in medical use.  相似文献   

12.
Water-soluble cobalt(II) tetradentate Schiff base complexes have been shown to form charge transfer (CT) complexes with a series of nucleoside monophosphates including adenosine-5'-monophosphate (AMP) and cytidine-5'-monophosphate (CMP). The investigated water-soluble cobalt(II) Schiff base complexes are (i) disodium[{bis(5-sulfo-salicylaldehyde)-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-salophen)] (1); (ii) disodium[{bis(5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-sal-4,5-dmophen)] (2) and (iii) disodium[{bis(4-methoxy-5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na(2)[Co(SO3-4-meosal-4,5-dmophen)] (3). The formation constant and thermodynamic parameters for charge transfer complex formation of water-soluble cobalt(II) Schiff base complexes with nucleoside monophosphates were determined spectrophotometrically in aqueous solution at constant ionic strength (I = 0.2 mol dm(-3) KNO3) under physiological condition (pH 7.0) and at various temperatures between 288 and 308 K. The stoichiometry has been found to be 1:1 (water-soluble cobalt(II) Schiff base complex: nucleoside monophosphate) in each case. Our spectroscopic and thermodynamic results show that the interaction of water-soluble cobalt(II) Schiff base complexes with the investigated nucleoside monophosphates occurs mainly through the phosphate group. The trend of the interaction according to the cobalt(II) Schiff base complexes due to electronic and steric factors is as follows: Na2[Co(SO3-salophen)] > Na2[Co(SO3-sal-4,5-dmophen)] > Na2[Co(SO3-4-meosal-4,5-dmophen)]. Also the trend of the interaction of a given cobalt(II) Schiff base complex according to the nucleoside monophosphate is as follows: CMP > AMP.  相似文献   

13.
The dicopper(II) complex [Cu(2)(L)](4+) (L = alpha,alpha'-bis[bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino]-m-xylene) reacts with hydrogen peroxide to give the dicopper(II)-hydroquinone complex in which the xylyl ring of the ligand has undergone a double hydroxylation reaction at ring positions 2 and 5. The dihydroxylated ligand 2,6-bis([bis[2-(3-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)benzene-1,4-diol was isolated by decomposition of the product complex. The incorporation of two oxygen atoms from H(2)O(2) into the ligand was confirmed by isotope labeling studies using H(2)(18)O(2). The pathway of the unusual double hydroxylation was investigated by preparing the two isomeric phenolic derivatives of L, namely 3,5-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (6) and 2,6-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (7), carrying the hydroxyl group in one of the two positions where L is hydroxylated. The dicopper(II) complexes prepared with the new ligands 6 and 7 and containing bridging micro-phenoxo moieties are inactive in the hydroxylation. Though, the dicopper(II) complex 3 derived from 6 and containing a protonated phenol is rapidly hydroxylated by H(2)O(2) and represents the first product formed in the hydroxylation of [Cu(2)(L)](4+). Kinetic studies performed on the reactions of [Cu(2)(L)](4+) and 3 with H(2)O(2) show that the second hydroxylation is faster than the first one at room temperature (0.13 +/- 0.05 s(-1) vs 5.0(+/-0.1) x 10(-3) s(-1)) and both are intramolecular processes. However, the two reactions exhibit different activation parameters (Delta H++ = 39.1 +/- 0.9 kJ mol(-1) and Delta S++ = -115.7 +/- 2.4 J K(-1) mol(-1) for the first hydroxylation; Delta H++ = 77.8 +/- 1.6 kJ mol(-1) and Delta S++ = -14.0 +/- 0.4 J K(-1) mol(-1) for the second hydroxylation). By studying the reaction between [Cu(2)(L)](4+) and H(2)O(2) at low temperature, we were able to characterize the intermediate eta(1):eta(1)-hydroperoxodicopper(II) adduct active in the first hydroxylation step, [Cu(2)(L)(OOH)](3+) [lambda(max) = 342 (epsilon 12,000), 444 (epsilon 1200), and 610 nm (epsilon 800 M(-1)cm(-1)); broad EPR signal in frozen solution indicative of magnetically coupled Cu(II) centers].  相似文献   

14.
Qin Y  Bakker E 《Talanta》2002,58(5):909-918
The binding properties of neutral or charged chromoionophores and anion ionophores in solvent polymeric membranes were characterized in situ by the so-called sandwich membrane method. Acidity constants (pK(a)) of eight chromoionophores (ETH 5294, ETH 2439, ETH 5350, ETH 5418, ETH 5315, ETH 7061, ETH 7075, ETH 2412) were measured in bis(2-ethylhexyl)sebacate (DOS) and o-nitrophenyloctylether (NPOE) plasticized poly(vinyl chloride) (PVC) membranes commonly used in optical and potentiometric ion sensors. The pK(a) values of all chromoionophores in DOS membranes are by 2-3 orders of magnitude smaller than in NPOE membranes. The weak alkali metal ion binding properties with neutral H(+)-chromoionophore and anion binding with electrically charged chromoionophores were also studied quantitatively. The complex formation constants of the commercially available Co(III)cobyrinate nitrite ionophore and the organomercury chloride ionophore, ETH 9009, were also measured. The very low stability constant observed for ETH 9009 (logbeta(2)=3.60+/-0.03 in PVC-DOS and 3.61+/-0.01 in PVC-NPOE) was explained by the decomposition of the ionophore in contact with chloride samples. On the other hand, the electrically charged nitrite ionophore showed strong complexation with nitrite ions, with logbeta=10.58 and 10.59 in DOS and NPOE membranes, respectively. In contrast to cation ionophores, the stability constant of the NO(2)(-) ionophore does not change with different plasticizers.  相似文献   

15.
The homo-oxo-calix[3]arene-facilitated electrochemistry of dopamine at the polarised liquid|liquid interface is presented. Cyclic voltammetry indicated that the dopamine: homo-oxo-calix[3]arene complex formed at the interface between water and 1,2-dichloroethane had a 1:2 stoichiometry, which was confirmed by 1H NMR titration. The electrochemically-determined association constants for the homo-oxo-calix[3]arene complexes with dopamine (log β 8.3), Na+ (8.0) and K+ (7.5) showed that the ionophore was more selective for dopamine over the two alkali metal cations than the dibenzo-18-crown-6 ionophore. Square wave voltammetry was employed for assessment of low concentration measurements, with a limit of detection of 3.8 μM dopamine achieved. These results show that oxo-calixarene-based ionophores are useful reagents for the detection of dopamine at the interface between two immiscible electrolyte solutions.  相似文献   

16.
An electrochemical method for the determination of the ionophores monensin and lasalocid was developed, based on the polarization of an agar gel/nitrobenzene electrolyte interface. The measured current corresponding to the facilitated ion transfer across this interface is directly proportional to the concentration of an ionophore dissolved in the organic phase. Using cyclic voltammetry in a three-electrode system the detection limit for both ionophores is about 3 × 10?5 M.  相似文献   

17.
Amide-functionalised salen ligands capable of extracting metal salts have been synthesised and characterised. Single-crystal X-ray structure determinations of complexes of NiSO4, [Ni(L)(SO4)], confirm that the ionophores are in a zwitterionic form with Ni(II) bound in the deprotonated salen moiety and the SO4(2-) ion associated with protonated pendant N'-amidopiperazine groups. Treatment of [Ni(L)(SO4)] with base removes the protons from the pendant amido-amine group resulting in loss of the SO4(2-) ion and formation of metal-only complexes of type [Ni(L-2H)], which have been characterized by single-crystal X-ray diffraction. Three of the ligands with solubilities suitable for solvent extraction studies show loading and stripping pH-profiles that are suitable for the recovery of CuSO4 or CuCl2 from industrial leach solutions. The copper-only complexes, [Cu(L-2H)], are selective for Cl- over SO4(2-) in both solvent extraction and bulk liquid membrane transport experiments and were found to bind Cl- in two steps via the formation of a 1:1:1 [Cu(L-H)Cl] assembly, followed by a 1:1:2 [Cu(L)Cl2] assembly as the pH of the aqueous phase is lowered. The anion transport selectivity was evaluated for a number of other mono-charged anions and interestingly the ligands were found to display a preference for the Br- ion. To probe the influence of the Hofmeister bias on the selectivity of anion complexation, single-phase potentiometric titration experiments were employed to investigate the binding of SO4(2-) and Cl- by one of the copper only complexes, [Cu(L-2H)] in 95 %/5 % MeOH/water. Under these conditions selectivity was reversed (SO4(2-)>Cl-) confirming that the Hofmeister bias, which reflects the relative hydration energies of the anions, dominates the selectivity of anion extraction from aqueous media into CHCl3.  相似文献   

18.
The transfer of Ag+ ion across a polarized 1,6-dichlorohexane/water interface assisted by an alkene or olefin ligand, 1,5-cyclooctadiene (COD), was studied by cyclic voltammetry. Even if COD was absent from the organic phase, Ag+ ion gave a reversible voltammetric wave, and the formal potential of the non-assisted ion-transfer at the 1,6-dichlorohexane/water interface was determined from the reversible half-wave potential. By the addition of COD to the organic phase, the reversible half-wave potential shifted to more negative potentials with increasing concentration of COD. The concentration dependence of the half-wave potential revealed that the transfer of Ag+ ion is assisted by the formation of 1:1 and 1:2 Ag+-COD pi-complexes in 1,6-dichlorohexane with overall formation constants of (2.1 +/- 0.2) x 10(3) M(-1) and (7.8 +/- 1.0) x 10(3) M(-2), respectively. The formal potential and the formation constants coincide well with those obtained by the potentiometry of Ag+ ion in aqueous and organic media with a Ag electrode.  相似文献   

19.
In an attempt to assess the potential role of the hydroxyl radical in the atmospheric degradation of sulfuric acid, the hydrogen transfer between H2SO4 and HO* in the gas phase has been investigated by means of DFT and quantum-mechanical electronic-structure calculations, as well as classical transition state theory computations. The first step of the H2SO4 + HO* reaction is the barrierless formation of a prereactive hydrogen-bonded complex (Cr1) lying 8.1 kcal mol(-1) below the sum of the (298 K) enthalpies of the reactants. After forming Cr1, a single hydrogen transfer from H2SO4 to HO* and a degenerate double hydrogen-exchange between H2SO4 and HO* may occur. The single hydrogen transfer, yielding HSO4* and H2O, can take place through three different transition structures, the two lowest energy ones (TS1 and TS2) corresponding to a proton-coupled electron-transfer mechanism, whereas the higher energy one (TS3) is associated with a hydrogen atom transfer mechanism. The double hydrogen-exchange, affording products identical to reactants, takes place through a transition structure (TS4) involving a double proton-transfer mechanism and is predicted to be the dominant pathway. A rate constant of 1.50 x 10(-14) cm(3) molecule(-1) s(-1) at 298 K is obtained for the overall reaction H2SO4 + HO*. The single hydrogen transfer through TS1, TS2, and TS3 contributes to the overall rate constant at 298 K with a 43.4%. It is concluded that the single hydrogen transfer from H2SO4 to HO* yielding HSO4* and H2O might well be a significant sink for gaseous sulfuric acid in the atmosphere.  相似文献   

20.
A new cost-effective amperometric proton selective sensor utilizing a single microhole interface between two immiscible electrolyte solutions (ITIES) is developed. The sensing methodology is based on measuring currents associated with proton transfer across the interface assisted by a proton selective ionophore. The ellipse shaped micro-interface was first fabricated by simple mechanical punching with a sharp needle on a thin PVC film (12 μm thick) commercially available as a food wrapping material. The microhole was then filled up with a gellified polyvinylchloride (PVC)-2-nitrophenyloctylether (NPOE) to create a single microhole liquid/liquid interface. Direct ion transfer reactions across the polarized interface serving as ion sensing platforms were studied using cyclic voltammetry. In order to enhance the selectivity of proton sensing, a proton selective ionophore, octadecyl isonicotinate (ETH1778), was incorporated into the organic gel layer and their electrochemical sensing characteristics were investigated using cyclic voltammetry and differential pulse stripping voltammetry. As an example, we employed the proton selective sensor for the determination of glucose concentrations. The detection scheme involves two steps: (i) protons are first generated by the oxidation of glucose with glucose oxidase in the aqueous phase; and (ii) the current associated with the proton transfer across the interface is then measured for correlating the concentration of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号