首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The author of the comment objects to the characterization and the interpretation of magnetoresistance (MR) effects observed by us in La1−xCaxMnO3 (0≤x<0.4) samples. In this reply, arguments are used to show that the samples' characterization and explanation of the MR by considering the role of the short-charge ordering (CO) regions and magnetic domains are reasonable and acceptable.  相似文献   

2.
Oxidative (δ>0) nonstoichiometry in the perovskite ‘LaMnO3+δ’ has been known to be manifested not with O interstitials but rather with cation vacancies of equal amounts at the two cation sites, La and Mn, i.e. La1−xMn1−yO3 with x=y. Here, we report the fabrication of samples with record-high cation-vacancy concentrations (x>0.12 or δ>0.4) by means of a variety of high-pressure oxygenation techniques. Linear (negative) dependence of the cell volume on x was observed within the whole x range investigated, down to 56.9 Å3 (per formula unit) for a sample oxygenated at 5 GPa and 1100 °C using Ag2O2 as an excess oxygen source. With increasing degree of cation deficiency in La1−xMn1−xO3, the ferromagnetic transition temperature was found to follow a bell shape with respect to x exhibiting a maximum of ∼250 K about x≈0.1. For moderately oxygenated samples large magnetoresistance effect was evidenced.  相似文献   

3.
Magnetoresistance (MR) and magnetization (dc and ac) measurements have been carried out on the manganites, (La0.7−2xEux)(Ca0.3Srx)MnO3 (0.05≤x≤0.15), in the temperature range of 5-320 K. At 5 K, an unusually large MR of almost 98% is observed in the x=0.15 sample, nearly up to fields of 4-5 T. This large high-field MR occurs in the metallic region, far below the insulator-metal transition temperature, and does not vary linearly with applied field. The unusual magnetoresistance is explained in the light of various possibilities such as phase segregation, cluster spin-glass behavior, etc.  相似文献   

4.
The effect of Cu-doping at Mo-site on structural, magnetic, electrical transport and specific heat properties in molybdates SrMo1−xCuxO3 (0≤x≤0.2) has been investigated. The Cu-doping at Mo-site does not change the space group of the samples, but decreases the structural parameter a monotonously. The magnetic properties change from Pauli-paramagnetism for x=0 to exchange-enhanced Pauli-paramagnetism for x=0.05 and 0.10, and then ferromagnetism for x=0.15 and 0.20. All samples exhibit metallic-like transport behavior in the whole temperature range studied. The magnitude of resistivity increases initially to x=0.10 and then decreases with increasing Cu-doping concentration. The results are discussed according to the electron localization due to the disorder effect induced by the random distribution of Cu at Mo site in the samples. In addition, the temperature dependence of specific heat for the Cu-doped sample has also been studied.  相似文献   

5.
The magnetism and transport properties of the samples LaMn1−xTixO3 (0≤x≤0.2) were investigated. All samples show a rhombohedral structure () at room temperature. The sample with x=0 undergoes the paramagnetic-ferromagnetic (PM-FM) transition accompanied by an insulator-metal (I-M) transition due to the oxygen excess. The doped samples show ferromagnetism and cluster behavior at low temperatures. Though no I-M transition associated with the PM-FM transition appears, the magnetoresistance (MR) effect was observed especially at low temperatures under the applied fields of 0.5 T. Due to the fact that the oxygen content in the Ti-doped samples is nearly stochiometry (3.01) and the Hall resistivity at room temperature is negative, the ferromagnetism in LaMn1−xTixO3 (0.05≤x≤0.2) is believed to be consistent with the Mn2+-O-Mn3+ double exchange (DE) mechanism. These results suggest that DE can be obtained by direct Mn-site doping.  相似文献   

6.
The effect of Co doping at Mn-site on the structural, magnetic and electrical transport properties in electron-doped manganties La0.9Te0.1Mn1−xCoxO3 (0≤x≤0.25) has been investigated. The room temperature structural transition from rhombohedra to orthorhombic (Pbnm) symmetry is found in these samples with x≥0.20 by the Rietveld refinement of X-ray powder diffraction patterns. All samples undergo the paramagnetic-ferromagnetic (PM-FM) phase transition. The Curie temperature TC of these samples decreases and the transition becomes broader with increasing Co-doping level. The magnetization magnitude of Co-doping samples increases at low temperatures with increasing Co-doping level for x≤0.15 and decreases with increasing Co-doping content further. The metal-insulator (M-I) transitions observed in the sample with x=0 are completely suppressed with Co doping, and the resistivity displays semiconducting behavior within the measured temperature region for these samples with x>0. All results are discussed according to the changes of the structure parameters and magnetic exchange interaction caused by Co-doping. In addition, the different effects between the Co doping and Cu doping in the Mn site for the electron-doped manganites are also discussed.  相似文献   

7.
The electrical and magnetic transport properties of the La0.67−xEuxCa0.33MnO3 system exhibit lowering of insulator to metal and paramagnetic to ferromagnetic transition temperature (TC) with the increase of Eu concentration in addition to possessing CMR property. The temperature variation of electrical resistivity and magnetic susceptibility for x=0.21 is found to have two distinct regions in the paramagnetic state for T>TP; one with the localization of lattice polaron in the high-temperature region (T>1.5TP) satisfying the dynamics of variable range hopping (VRH) model and the other being the combination of the spin and lattice polarons in the region TP<T<1.5TP. The resistivity variation with temperature and magnetic field, the cusp in the resistivity peak and CMR phenomenon are interpreted in terms of coexistence of spin and lattice small polarons in the intermediate region (TP<T<1.5TP). The spin polaron energy in the La0.46Eu0.21Ca0.33MnO3 system is estimated to be 106.73±0.90 meV and this energy decreases with the increase of external magnetic field. The MR ratio is maximal with a value of 99.99% around the transition temperature and this maximum persists till T→0 K, at the field of 8 T.  相似文献   

8.
The magnetic and transport properties of nanocrystalline ZnxFe3−xO4 with x=0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0, respectively, fabricated by the sol-gel method have been investigated. Large magnetoresistance (MR) was observed and found to be originated both from the tunneling of the spin-polarized electrons across the adjacent ferromagnetic grains and the scattering by the canted spins at the grain surface near the grain boundaries. It has been revealed that the MR for the ZnxFe3−xO4 samples (x=0, 0.5 and 1.0) increases with the temperature decreasing from room temperature until a maximum is reached at around 55 K. Then a sharp drop occurs with the further decrease in temperature, regarded as a spin (cluster) glass transition. For the samples studied, a biggest low field (0.5 T) MR value of about 20% for x=0 at 55 K has been obtained. The mechanism of the MR behavior of the materials was discussed.  相似文献   

9.
We have synthesized several polycrystalline samples with nominal compositions La0.7Sr0.3−xHgxMnO3+δ (0≤x≤0.2) by the standard solid-state reaction method. Instead of the sealed quartz tube method widely employed for the Hg-based systems, we adopted open atmosphere synthesis route. All the samples exhibited monophasic nature with rhombohedral structure as revealed by the X-ray diffraction data. A variation in the unit cell volume is observed with x, which is interpreted as a result of extra oxygen in-diffusion and subsequent cation vacancy creation. A broad metallic behavior is seen in the entire temperature range from 300 to 4 K. The samples showed varying amount of colossal magnetoresistance depending upon the temperature and applied magnetic field. The MR value as high as 30% was observed in x=0.2 sample and the MR is persistent over a wide temperature range with a little change in magnitude.  相似文献   

10.
The transport properties and magnetoresistance of half-Heusler CoNb1−xMnxSb (x=0.0-1.0) alloys have been investigated between 2 and 300 K. In this temperature range, a metallic conductivity has been observed for the alloys with higher (x=1.0) and lower (x=0.0-0.2) Mn contents. However, the middle Mn content alloys (x=0.4-0.8) exhibit non-metallic conductive behavior. Their temperature dependence of resistivity undergoes a Mott localization law ρ=ρ0exp(T0/T)p (p=1/4) rather than a thermal excitation regime ρ=ρ0exp(Ea/kT) at low temperature (). The localization can be attributed to atomic and magnetic disorder. Resistivity peaks from 25 to 300 K were also observed for these alloys. Magnetotransport investigation reveals that these resistivity peaks result from localization effect as well as spin-disorder scattering.  相似文献   

11.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

12.
Nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) manganites have been prepared by a simple and instantaneous solution combustion method, which is a low temperature initiated synthetic route to obtain fine-grained powders with relatively high surface area. The phase purity and crystal structure of the combustion products are carried out by powder X-ray diffraction. The as-made nanopowders are in cubic phase. On calcination to 900 °C, barium doped manganites retain cubic phase, whereas barium free manganite transformed to rhombohedral phase. The scanning electron microscope (SEM) results revealed that the combustion-derived compounds are agglomerated with fine primary particles. The doped manganites have surface area in the range 24-44 m2/g. The surface area of the manganites increases with barium content, whereas it decreases on calcination. Both undoped and doped lanthanum manganites show two active IR vibrational modes at 400 and 600 cm−1. The low temperature resistivity measurements have been carried out by four-probe method down to 77 K. All the samples exhibit metal-insulator behaviour and metal-insulator transition temperature (TM-I) in the range 184-228 K and it is interesting to note that, as the barium content increases the TM-I shifts to lower temperature side. The maximum TM-I of 228 K is observed for La0.9Ba0.1MnO3 sample.  相似文献   

13.
We report on the structural, frequency dependent ac susceptibility, dc magnetization and magnetoresistance (MR) measurements on polycrystalline samples of La0.9Ca0.1Mn1−yCryO3 (y=0, 0.1 and 0.2) prepared by sol-gel technique. For y=0, a paramagnetic to ferromagnetic transition is observed at Tc=136 K. Both for y=0.1 and 0.2, Tc increases from 136 to 180 K. For y=0, the imaginary part of the ac susceptibility shows a broad transition at Tf<Tc which does not depend very much on the frequency. However, for y=0.1 and 0.2, the frequency dependence resembles that of a spin glass. Though all the three samples show a semi-conducting behavior between 300 and 5 K, a negative MR is observed corresponding to Tc and Tf. The value of MR decreases for the Cr substituted samples.  相似文献   

14.
Composite samples (1−x)La0.7Ca0.2Sr0.1MnO3(LCSMO)+x(ZnO) with different ZnO doping levels x have been investigated systematically. The structure and morphology of the composites have been studied by the X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The XRD and SEM results indicate that no reaction occurs between LCSMO and ZnO grains, and that ZnO segregates mostly at the grain boundaries of LCSMO. The magnetic properties reveal that the ferromagnetic order of LCSMO is weakened by addition of ZnO. The results also show that ZnO has a direct effect on the resistance of LCSMO/ZnO composites, especially on the low-temperature resistance. With increase of the ZnO doping level, TP shifts to a lower temperature and the resistance increases. It is interesting to note that an enhanced magnetoresisitance (MR) effect for the composites is found over a wide temperature range from low temperature to room temperature in an applied magnetic field of 3 kOe. The maximum MR appears at x=0.1. The low field magnetoresistance (LFMR) results from spin-polarized tunneling. However, around room temperature, the enhanced MR of the composites is caused by magnetic disorder.  相似文献   

15.
A series of SmCoAsO1−xFx (with x=0, 0.05, 0.1, and 0.2) samples have been prepared by solid state reactions. X-ray powder diffraction proved that all samples can be indexed as a tetragonal ZrCuSiAs-type structure. A clear shrinkage of the lattice constants a and c with increasing F content indicated that F has been doped into the lattice. The magnetic and transport properties of the samples have been investigated. Parent SmCoAsO compound exhibited complicated magnetism including antiferromagnetism, ferromagnetism, and ferrimagnetism. For the fluorine doped samples, the antiferromagnetic Néel temperatures were almost independent of the F content and metamagnetic transitions were observed below antiferromagnetic Néel temperatures. With increasing F content, high temperature (below 142 K) ferrimagnetic state gradually changed to ferromagnetic state. In the resistivity result, metallic conduction in the region of 2-300 K and Fermi liquid behavior at low temperatures were shown in all samples. Transport properties at applied magnetic fields showed anomalies at low temperatures.  相似文献   

16.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Ca0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show an orthorhombic structure (O′-Pbnm) at room temperature. It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase in the Te content. All samples exhibit an insulator-metal (I-M) transition and the resistivity increases with the increase in the Te-doping level. Additionally, the Curie temperature Tc decreases and the transition becomes broader with increasing Te-doping level, in contrast, the magnetization of Te-doping samples at low temperatures decrease with increasing x as x≤0.10 and then increase with further increasing x to 0.15. The results are discussed in terms of Jahn-Teller (JT) vibrational anisotropy Q3/Q2 and the opening of the new DE channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ ions for Ca2+ ions.  相似文献   

17.
We report the detailed results of magnetization and magnetoresistance measurements in the Ru doped layered manganite system La1.2Sr1.8Mn2−xRuxO7 (x=0, 0.1, 0.5, 1.0). High-resolution measurements of magnetization and magnetoresistance were carried out as functions of temperature, magnetic field and time. We find evidence for the existence of competing ferromagnetic and antiferromagnetic interactions resulting in the formation of a frustrated spin-glass-like state at low temperatures. The time dependent magnetization follows the relation very well. We find that Ru doping enhances the coercive field and drives the system towards a magnetically mixed phase at low temperatures. Large negative magnetoresistance values are observed in all samples and at low temperatures the magnetoresistance varies as the square root of the applied magnetic field.  相似文献   

18.
We have synthesized a series of La0.7(Ca0.3−xCex)MnO3 (0≤x≤0.2) by standard solid-state reaction method. X-ray diffraction (XRD) measurement was carried out for structural studies and Rietveld refinement was done for structural analysis. The transport properties were studied using four probe technique. The temperature dependence of the resistivity was measured in the temperature range of 20 K to room temperature. It is found that all samples show a systematic variation in metal to insulator transition at transition temperature (TP) and resistivity (ρ) with the relative concentration of hole and electron doping in the system. The samples showed varying amounts of colossal magnetoresistance depending upon temperature and applied magnetic field. The magnetoresistance values as high as 72% were observed in x=0 sample.  相似文献   

19.
We report on the enhanced electromechanical, magnetic and magnetoelectric properties of Bi1−xCaxFe1−xTixO3 solid solutions. The crystal structure of the x≈0.25 compounds are close to the rhombohedral-orthorhombic phase boundary, and the solid solutions are characterized by increased electromechanical properties due to the polarization extension near the polar-nonpolar border. The homogenous weakly ferromagnetic state is established at x>0.15 doping. The chemical doping shifts the magnetic transition close to room temperature, thus enlarging the magnetic susceptibility of the compounds. The solid solutions at the morphotropic phase boundary exhibit a nearly twofold increase in piezoelectric response, whereas the magnetoelectric coupling shows five times enhancement in comparison with the parent bismuth ferrite.  相似文献   

20.
SrBi2−xPrxNb2O9 (x=0, 0.04 and 0.2) ceramics were prepared by a solid state reaction method. X-ray diffraction analysis indicated that single-phase layered perovskite structure ferroelectrics were obtained. A relaxor behavior of frequency dispersion was observed among Pr-doped SrBi2Nb2O9. The degree of frequency dispersion ΔT increased from 0 for x=0-7 °C for x=0.2, and the extent of relaxor behavior γ increased from 0.94 for x=0-1.45 for x=0.2. The substitution of Pr ions for Bi3+ ions in the Bi2O2 layers resulted in a shift of the Curie point to lower temperatures and a decrease in remanent polarization. In addition, the coercive field 2Ec reduced from 110 kV/cm for an undoped specimen to 90 kV/cm for x=0.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号