首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li[Ni1/3Co(1-x)/3Mn1/3Fe x/3] O2(x?=?0.0, 0.1, 0.3, 0.5, 0.7, and 0.9) cathode materials have been synthesized via hydroxide co-precipitation method followed by a solid state reaction. Thermogravimetry (TG) and differential thermal analysis (DTA) measurements were utilized to determine the calcination temperature of precursor sample. The crystal structure features were characterized by X-ray diffraction (XRD). The electrochemical properties of Li[Ni1/3Co(1-x)/3Mn1/3Fe x/3]O2 were compared by means of cyclic voltammetry (CV), electrochemical impedance spectroscopy(EIS), and galvanostatic charge/discharge test. Electrochemical test results indicate that Li[Ni1/3Co0.9/3Mn1/3Fe0.1/3] O2 decrease charge transfer resistance and enhance Li+ ion diffusion velocity and thus improve cycling and high-rate capability compared with Li[Ni1/3Co1/3Mn1/3]O2. The initial discharge specific capacity of Li[Ni1/3Co0.9/3Mn1/3Fe0.1/3] O2 was 178.5 mAh/g and capacity retention was 87.11 % after 30 cycles at 0.1C, with the battery showing good cycle performance.  相似文献   

2.
The samples with the Mn3+/Mn4+ ratio fixed at 2:1 La(2+x)/3Sr(1−x)/3Mn1−xCrxO3 (0≤x≤0.20) have been prepared. The magnetic, electrical transport, and magnetoresistance properties have been investigated. Remarkable transport and colossal magnetoresistance (CMR) effect, as well as cluster glass (CG) behaviors have been clearly observed in the samples studied. It was found that the Curie temperature Tc and insulator−metal transition temperature Tp1 are strongly affected by Cr substitution. The experiment observations are discussed by taking into account the variety of tolerance factors t; the effects of A-site radius 〈rA〉 and the A-site mismatch effect (σ2).  相似文献   

3.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

4.
Electron paramagnetic resonance spectroscopy was used for studying the effect of allied and alien ions on the EPR spectrum of Mn4+-containing lithium-manganese spinel oxides. Manganese spinel oxides with paramagnetic Mn4+ and diamagnetic substituents in the 16d spinel sites were studied: Li[Mg0.5Mn1.5]O4, Li[Mg0.5−xCo2xMn1.5−x]O4, 0<x≤0.5, and Li[Li1/3Mn5/3]O4. Ni2+-ions with integer-spin-ground state (S=1) were selected as alien ions: Li[Mg0.5−xNixMn1.5]O4 (0≤x≤0.5), Li[Li(1−2x)/3NixMn(5−x)/3]O4 (0≤x≤0.5), and Li[Ni0.5Mn1.5−yTiy]O4 (0≤y≤1.0). It was shown that in Ni-substituted oxides the low temperature EPR response comes from magnetically correlated Ni-Mn spins, while at high registration temperature Mn4+ ions give rise to the EPR profile. Analysis of the EPR line width allows differentiating between the contributions of the density of paramagnetic species and the strength of the exchange interactions in magnetically concentrated systems. The density of allied and alien paramagnetic species has no effect on the EPR line width in cases when the strengths of antiferro- and ferromagnetic interactions on an atomic site are close. On the contrary, when antiferro- or ferromagnetic interactions on an atomic site are dominant, the EPR line width increases with the density of paramagnetic species.  相似文献   

5.
Li1 + x(Ni0.5Mn0.5)1  xO2 cathode material for Li-ion batteries has been prepared by a molten salt method using Li2CO3 salt. The influences of synthetic temperature and time have been intensively investigated. It is easy to obtain materials with a hexagonal α-NaFeO2 structure except broad peaks between 20° and 25°. Nickel in Li1 + x(Ni0.5Mn0.5)1  xO2 is oxidized to a trivalent state while manganese maintained a tetravalent state. It is found that the discharge capacities of all samples increase with cycling. The sample prepared at 850 °C for 5 h has a discharge capacity of 130 mAh g− 1 between 2.5 and 4.5 V versus VLi+/Li at a specific current of 0.13 mA cm− 2 after 50 cycles at 25 °C.  相似文献   

6.
Core-shell Co(1−x)NixFe2O4/polyaniline nanoparticles, where the core was Co(1−x)NixFe2O4 and the shell was polyaniline, were prepared by the combination of sol-gel process and in-situ polymerization methods. Nanoparticles were investigated by Fourier transform spectrometer, X-ray diffraction diffractometer, Scanning electron microscope, Differential thermal analysis and Superconductor quantum interference device. The results showed that the saturation magnetization of pure Co(1−x)NixFe2O4 nanoparticles were 57.57 emu/g, but Co(1−x)NixFe2O4/polyaniline composites were 37.36 emu/g. It was attributed to the lower content (15 wt%), smaller size and their uneven distribution of Co(1−x)NixFe2O4 nanoparticles in the final microsphere composites. Both Co(1−x)NixFe2O4 and PANI/Co(1−x)NixFe2O4 showed superparamagnetism.  相似文献   

7.
《Solid State Ionics》2006,177(1-2):105-112
Five compositions of Li[Co1 −2x(Li1 / 3Mn2 / 3)x(Ni1 / 2Mn1 / 2)x]O2 solid solutions ( x = 0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized using a sol–gel method with three end members of LiCoO2, Li2MnO3(Li[Li1 / 3Mn2 / 3]O2), and Li[Ni0.5Mn0.5]O2. The compositions of metals in transition metal sites were changed to see the effect of them on electrochemical behavior of the solid solutions. All the samples were nano-sized semi-spherical shaped particles with a layered structure. The reduction of cobalt content (the increase of other metals) in the sites increases the lattice parameters, a and c, resulting in the shift of Raman and XRD peak positions. The discharge capacity fading turned serious at higher Co contents, but it was significantly diminished with the decrease of Co content. At lower Co contents, the capacity increased with cycle numbers. The most stable voltage profile was obtained from the composition of Li[Li1 / 15Co3 / 5Ni1 / 10Mn7 / 30]O2 (x = 0.2).  相似文献   

8.
NiAlxFe2−xO4 and Ni1−yMnyAl0.2Fe1.8O4 ferrites were prepared by the conventional ceramic method and were characterized by X-ray diffraction, scanning electron microscopy, and magnetic measurements. The single spinel phase was confirmed for all prepared samples. A proper explanation of data is possible if the Al3+ ions are assumed to replace Fe3+ ions in the A and B sites simultaneously for NiAlxFe2−xO4 ferrites, and if the Mn2+ ions are assumed to replace Ni2+ ions in the B sites for Ni1−yMnyAl0.2Fe1.8O4 ferrites. Microstructural factors play an important role in the magnetic behavior of Ni1−yMnyAl0.2Fe1.8O4 ferrites with large Mn2+ content.  相似文献   

9.
The redox reaction of Ce4+-Ce3+ promoted by the catalytic function of nickel ions in a (1−x)CeO2-xNiO solid solution was investigated for solar H2 production by the two-step water-splitting reaction. By irradiation using an infrared imaging lamp as a solar simulator, the O2-releasing reaction with (1−x)CeO2-xNiO solid solution proceeded at 1673-1873 K, and its reduced form was produced. The amounts of H2 gas evolved by the reduced form were 1.2-2.5 cm3/g and the evolved gases amounts ratio of H2/O2 was nearly 2, which is equal to the stoichiometric value of the water-splitting reaction (H2O=H2+1/2O2). The maximum amounts of evolved H2 and O2 gases were obtained at the Ce:Ni mole ratio of 0.95:0.05 (x=0.05) in the (1−x)CeO2-xNiO system. The X-ray absorption fine structure (XAFS) measurement showed that the O2-releasing and H2-generation reactions with (1−x)CeO2-xNiO solid solution were repeatable with the redox system of Ce4+-Ce3+, which was enhanced by the catalytic function of Ni2+-Ni0.  相似文献   

10.
In this paper, the structural, thermal and magnetic properties of Ni1−xMnxFe2O4 are presented. It is observed that high concentration of Mn2+ ions into NiFe2O4 tends to reduce the particle size. Calcination at 500 °C has resulted in the growth of Ni1−xMnxFe2O4 nanoparticles, but the calcination at 900 °C has led to the evaporation of the majorities of the polyvinyl alcohol. After calcination at 900 °C, crystallographically oriented NiMnFe2O4 nanoparticles are formed. These Ni1−xMnxFe2O4 nanoparticles show hysteresis behaviour upon magnetization. On the other hand, saturation magnetization (Ms) values decreases with increasing Mn content in ferrite due to the influence of Mn2+ ion in the sub lattice.  相似文献   

11.
Microstructure, phase transformation behavior and dielectric properties of BaTi1−x(Al1/2Nb1/2)xO3 (0.01≤x≤0.40) ceramics were investigated. A high level of (Al1/2Nb1/2)4+ substitution for Ti4+ ions was not conducive to the stability of the perovskite structure and resulted in the formation of BaAl2O4. As x was increased, lattice constants and unit cell volume decreased, reached a minimum at x=0.10 and then increased. The BaTi1−x(Al1/2Nb1/2)xO3 ceramics at room temperature experienced a transformation from ferroelectric to paraelectric phase with increasing (Al1/2Nb1/2)4+ concentration. Meanwhile, permittivity of the BaTi1−x(Al1/2Nb1/2)xO3 ceramics was markedly reduced, while Q value was slightly increased. Frequency dispersion of dielectric peak was obviously increased as x was increased from 0.01 to 0.10. It is of great interest that a dielectric abnormity represented by a broad dielectric peak at 200-400 K was observed for the composition with x=0.40.  相似文献   

12.
Following a preliminary investigation, Li/Li1+xV3O8 cells have been examined. Using samples of low x content, up to 3 eq Li+ could be accepted both chemically and electrochemically by one mole of active material. Li+ is accomodated in the tetrahedral sites existing between the (V3O8)(1+x)- layers. Li+ jumping from site to site is fast and permits high rate capabilities: at 10 mA/cm2, 1.1 eq Li+ per mole could still be inserted. The structure does not show irreversible alterations upon extended lithiation, allowing long cycle lives to be achieved. Kinetic constraints limit the recovery of the full capacity of the first discharge at medium-high rates, but the second-discharge capacity declines slowly with cycle number.  相似文献   

13.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

14.
Li[Co0.1Ni0.15Li0.2Mn0.55]O2 was synthesized, as a cathode material with high capacity, by a simple combustion method followed by annealing at 800?°C. Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode materials were coated with lithium-active Co3(PO4)2 to improve the electrochemical performance of rechargeable lithium batteries. Morphologies and physical properties of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 before and after the Co3(PO4)2 coating were analyzed with a scanning electron microscope equipped with an energy dispersive X-ray spectroscope. Transmission electron microscopy, powder X-ray diffraction, and Brunauer?CEmmett?CTeller surface area analyses were also carried out. The electrochemical performances of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material before and after Co3(PO4)2 coating were evaluated by galvanostatic charge?Cdischarge testing at different charge and discharge densities. The temperature dependence of the cathode material before and after Co3(PO4)2 coating was investigated at 0, 10, 20, 30, 40, and 50?°C at a rate of 0.1?C. Co3(PO4)2-Li[Co0.1Ni0.15Li0.2Mn0.55]O2 exhibited good electrochemical performance under high C-rate and experimental temperature conditions. The enhanced electrochemical performances were attributed to the formation of a lithium-active Co3(PO4)2-coating layer on Li[Co0.1Ni0.15Li0.2Mn0.55]O2.  相似文献   

15.
Li0.5Fe2.5−xMnxO4 (0≦x≦1.0) powders with small and uniformly sized particles were successfully synthesized by microwave-induced combustion, using lithium nitrate, ferric nitrate, manganese nitrate and carbohydrazide as the starting materials. The process takes only a few minutes to obtain as-received Mn-substituted lithium ferrite powders. The resultant powders annealed at 650 °C for 2 h and were investigated by thermogravimeter/differential thermal analyzer (TG/DTA), X-ray diffractometer (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and thermomagnetic analysis (TMA). The results revealed that the Mn content were strongly influenced the magnetic properties and Curie temperature of Mn-substituted lithium ferrite powder. As for sintered Li0.5Fe2.5−xMnxO4 specimens, substituting an appropriate amount of Mn for Fe in the Li0.5Fe2.5−xMnxO4 specimens markedly improved the complex permeability and loss tangent.  相似文献   

16.
Oxidative (δ>0) nonstoichiometry in the perovskite ‘LaMnO3+δ’ has been known to be manifested not with O interstitials but rather with cation vacancies of equal amounts at the two cation sites, La and Mn, i.e. La1−xMn1−yO3 with x=y. Here, we report the fabrication of samples with record-high cation-vacancy concentrations (x>0.12 or δ>0.4) by means of a variety of high-pressure oxygenation techniques. Linear (negative) dependence of the cell volume on x was observed within the whole x range investigated, down to 56.9 Å3 (per formula unit) for a sample oxygenated at 5 GPa and 1100 °C using Ag2O2 as an excess oxygen source. With increasing degree of cation deficiency in La1−xMn1−xO3, the ferromagnetic transition temperature was found to follow a bell shape with respect to x exhibiting a maximum of ∼250 K about x≈0.1. For moderately oxygenated samples large magnetoresistance effect was evidenced.  相似文献   

17.
Zhaohui Tang  Xinhai Li  Zhixing Wang 《Ionics》2013,19(11):1495-1501
Li-rich Mn-based Li[Li0.09Mn0.65*(0.91???x) Ni0.35*(0.91???x) Al x ]O2 cathode materials have been prepared by traditional solid-state reaction. The lattice parameters a, c, and V have decreased, but c/a increased with the increase of Al doping. All the samples show analogy morphology of a quasi-spherical shape. Li[Li0.09Mn0.591Ni0.319]O2 sample shows a higher initial discharge capacity of 239.4 mAh?g?1 at 20 mA?g?1, while Li[Li0.09Mn0.582Ni0.314Al0.015]O2 sample presents a higher discharge capacity of 170.1 mAh?g?1 and ratio of 72.0 % with 200 vs. 20 mA?g?1. The solid electrolyte interface resistance (R SEI) and charge transfer process resistance (R ct ) values are relatively smaller for Al-doped samples than those of non-doped samples. Almost no reduction is observed after 24-time cycles in different discharge rates for the samples prepared.  相似文献   

18.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

19.
The erbium-based manganite ErMnO3 has been partially substituted at the manganese site by the transition-metal elements Ni and Co. The perovskite orthorhombic structure is found from x(Ni)=0.2–0.5 in the nickel-based solid solution ErNixMn1−xO3, while it can be extended up to x(Co)=0.7 in the case of cobalt, provided that the synthesis is performed under oxygenation conditions to favor the presence of Co3+. Presence of different magnetic entities (i.e., Er3+, Ni2+, Co2+, Co3+, Mn3+, and Mn4+) leads to quite unusual magnetic properties, characterized by the coexistence of antiferromagnetic and ferromagnetic interactions. In ErNixMn1−xO3, a critical concentration xcrit(Ni)=1/3 separates two regimes: spin-canted AF interactions predominate at x<xcrit, while the ferromagnetic behavior is enhanced for x>xcrit. Spin reversal phenomena are present both in the nickel- and cobalt-based compounds. A phenomenological model based on two interacting sublattices, coupled by an antiferromagnetic exchange interaction, explains the inversion of the overall magnetic moment at low temperatures. In this model, the ferromagnetic transition-metal lattice, which orders at Tc, creates a strong local field at the erbium site, polarizing the Er moments in a direction opposite to the applied field. At low temperatures, when the contribution of the paramagnetic erbium sublattice, which varies as T−1, gets larger than the ferromagnetic contribution, the total magnetic moment changes its sign, leading to an overall ferrimagnetic state. The half-substituted compound ErCo0.50Mn0.50O3 was studied in detail, since the magnetization loops present two well-identified anomalies: an intersection of the magnetization branches at low fields, and magnetization jumps at high fields. The influence of the oxidizing conditions was studied in other compositions close to the 50/50=Mn/Co substitution rate. These anomalies are clearly connected to the spin inversion phenomena and to the simultaneous presence of Co2+ and Co3+ magnetic moments. Dynamical aspects should be considered to well identify the high-field anomaly, since it depends on the magnetic field sweep rate.  相似文献   

20.
Structural and morphological characteristics of (1−x)α-Fe2O3-xSnO2 (x=0.0-1.0) nanoparticles obtained under hydrothermal conditions have been investigated by X-ray diffraction (XRD), transmission Mössbauer spectroscopy, scanning and transmission electron microscopy as well as energy dispersive X-ray analysis. On the basis of the Rietveld structure refinements of the XRD spectra at low tin concentrations, it was found that Sn4+ ions partially substitute for Fe3+ at the octahedral sites and also occupy the interstitial octahedral sites which are vacant in α-Fe2O3 corundum structure. A phase separation of α-Fe2O3 and SnO2 was observed for x≥0.4: the α-Fe2O3 structure containing tin decreases simultaneously with the increase of the SnO2 phase containing substitutional iron ions. The mean particle dimension decreases from 70 to 6 nm, as the molar fraction x increases up to x=1.0. The estimated solubility limits in the nanoparticle system (1−x)α-Fe2O3-xSnO2 synthesized under hydrothermal conditions are: x≤0.2 for Sn4+ in α-Fe2O3 and x≥0.7 for Fe3+ in SnO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号