首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fabrication and evaluation of nanocomposites based on microbial cellulose and polyaniline (PANi) are described. Microbial cellulose, so called, bacterial cellulose (BC) was introduced to interfacial polymerization of aniline. Two different phases based on water and chloroform made it easy for nanosized PANi particles to be synthesized on BC. Without any help of a surfactant or templates, BC played a critical role of supporting the growth of PANi. As a function of aniline concentration, the corresponding PANi content and volume resistivity were checked. From morphological images observed by FE-SEM, PANi nanoparticles were densely arrayed along every fiber of BC. The conjugated backbone of PANi was thought to contribute to the improvements of thermal stability of PANi/BC composites. The stiffness and brittleness of PANi were compensated by more ductile BC, suggesting BC can be a promising substrate for it. By the simple and facile interfacial polymerization, the electrical conductivity of PANi/BC composites reached up to 3.8?×?10?1?S/cm when 0.32?M of aniline was used. This PANi/BC nanocomposite can be useful in applications requiring biocompatibility and electrical conductivity such as biological and chemical sensors.  相似文献   

2.
Measurements of the thermal expansion coefficients (TECs) of cellulose crystals in the lateral direction are reported. Oriented films of highly crystalline cellulose Iβ and IIII were prepared and then investigated with X‐ray diffraction at specific temperatures from room temperature to 250 °C during the heating process. Cellulose Iβ underwent a transition into the high‐temperature phase with the temperature increasing above 220–230 °C; cellulose IIII was transformed into cellulose Iβ when the sample was heated above 200 °C. Therefore, the TECs of Iβ and IIII below 200 °C were measured. For cellulose Iβ, the TEC of the a axis increased linearly from room temperature at αa = 4.3 × 10?5 °C?1 to 200 °C at αa = 17.0 × 10?5 °C?1, but the TEC of the b axis was constant at αb = 0.5 × 10?5 °C?1. Like cellulose Iβ, cellulose IIII also showed an anisotropic thermal expansion in the lateral direction. The TECs of the a and b axes were αa = 7.6 × 10?5 °C?1 and αb = 0.8 × 10?5 °C?1. The anisotropic thermal expansion behaviors in the lateral direction for Iβ and IIII were closely related to the intermolecular hydrogen‐bonding systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1095–1102, 2002  相似文献   

3.
Polysaccharide- and gelatin-based bioblends and polyblends were synthesized and characterized by complex impedance spectroscopy, proton nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). Higher ionic conductivities of 7.9 × 10?5 S/cm at room temperature and 2.5 × 10?3 S/cm at 80 °C were obtained for the agar-chitosan polyblends. For all samples, the activation energies, calculated from the Arrhenius plot of ionic conductivity and from the onset of NMR line narrowing, are in the range 0.30–0.86 and 0.38–0.57 eV, respectively. The glass transition temperatures (T g NMR ) varied from 200 to 215 K, depending on the sample composition. The temperature dependence of the 1H spin–lattice relaxation revealed two distinct proton dynamics. The EPR spectra are characteristic of Cu2 ions in tetragonally distorted octahedral sites. Quantitative analysis of the EPR spin Hamiltonian g || and A || parameters revealed copper ions complexed by nitrogens and oxygens in the samples containing chitosan or gelatin and only by oxygens in agar-based ones. The in-plane π bonding is less covalent for the gelatin and chitosan blends. Results suggest that natural bioblends and polyblends are interesting systems to be used in materials science engineering.  相似文献   

4.
The membranes for gel polymer electrolyte (GPE) for lithium-ion batteries were prepared by electrospinning a blend of poly(vinylidene fluoride) (PVdF) with cellulose acetate (CA). The performances of the prepared membranes and the resulted GPEs were investigated, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), porosity, hydrophilicity, electrolyte uptake, mechanical property, thermal stability, AC impedance measurements, linear sweep voltammetry, and charge–discharge cycle tests. The effect of the ratio of CA to PVdF on the performance of the prepared membranes was considered. It is found that the GPE based on the blended polymer with CA:PVdF =2:8 (in weight) has an outstanding combination property-strength (11.1 MPa), electrolyte uptake (768.2 %), thermal stability (no shrinkage under 80 °C without tension), and ionic conductivity (2.61 × 10?3 S cm?1). The Li/GPE/LiCoO2 battery using this GPE exhibits superior cyclic stability and storage performance at room temperature. Its specific capacity reaches up to 204.15 mAh g?1, with embedded lithium capacity utilization rate of 74.94 %, which is higher than the other lithium-ion batteries with the same cathode material LiCoO2 (about 50 %).  相似文献   

5.
Abstract

The emission produced by sulfite after oxidation by potassium permanganate in acidic solution in the presence of Ru(phen)3 2+ is used to determine 1.0 × 10?7 to 2.5 × 10?5 mol/L sulfite. The limit of detection is 4.5 × 10?9 mol/L and the relative standard deviation is 3.1% for a 1 × 10?5 mol/L sulfite solution (n=8). The method was also applied satisfactorily to the determination of sulfur dioxide in air by using triethanolamine (TEA) as absorbent material.  相似文献   

6.
《Analytical letters》2012,45(13):2557-2567
Abstract

A fast flow injection procedure with spectrophotometric detection based on the furosemide complexation with Fe(III) ions in ethanolic media is described. As carrier the flow single line system configuration used an ethanolic 10?2 mol L?1 Fe(III) solution flowing at 1.0 mL min?1, a 50 cm sample loop (250 µL total sample injection), and a 50 cm long reactor coil, at room temperature. The detection at 513 nm presented a linear dynamic range from 1.00×10?4 to 1.00×10?2 mol L?1, obeying the linear equation Abs=8.9×10?3+22.3×[furosemide] (r=0.998, n=7). The limit of detection (3σ/slope) was 3.00×10?5 mol L?1. The proposed method was applied to four commercial samples from different suppliers, as tablets and ampoules, and a synthetic urine sample spiked with the analyte without an effect from the other substances present in the formulation. The proposed procedure presented an analytical frequency of 95 measurements per hour. The results agreed with those from both the label and those determined by a spectrophotometric comparative procedure. Recoveries close to 100% were found in the commercial formulations and synthetic urine matrixes.  相似文献   

7.
《Analytical letters》2012,45(1):66-79
Abstract

Two fast flow injection procedures with fluorimetric detection based on the furosemide emission are presented. The first configuration used a phosphate buffer solution pH 3.00, 0.2 ionic strength (μ) solution flowing at 3.0 ml min?1 as carrier, a 80 cm sample loop (400 µl total sample injection), and a 40 cm long reactor coil, which was kept at room temperature; the second has a unique difference: the introduction of a new channel of surfactant solution with reduction of flow rate. The excitation and emission were carried out at 270 and 410 nm, respectively; both systems presented linear dynamic range from 1.0×10?7 to 1.0×10?5 mol l?1. The limit of detection (3σ/slope) was 3.0×10?8 mol l?1, to the first system, and 10?8 mol l?1 for the second one. Both proposed methods were applied to three commercial samples from different suppliers, as tablets and ampoules, and a synthetic urine sample spiked with the analyte. They presented an analytical frequency of 90 and 60 measurements per hour, respectively to phosphate and micelar media. The results agreed with those from the label and determined by a UV‐Vis spectrophotometric comparative procedure. Recoveries around 101% were found in the commercial formulations and synthetic urine matrixes.  相似文献   

8.
A new class of polyethers has been prepared by the Mitsunobu coupling of poly(4-vinyl phenol), P4VP, with low molecular weight poly(ethylene glycol)methyl ether. These comb-like polymers, having ca. 20–30% residual phenols, were characterized by IR, DSC, and TGA. Results of thermal analysis on the polymers suggest thermal stability to at least 300°C and a glass transition temperature in the range ?30 to ?40°C. Complexes with LiPF6 gave conductivities of ca. 1 × 10?5 S/cm at room temperature. The polymers were blended with plasticized poly(vinylidene fluoride) (PVDF) to prepare porous films and subsequently infiltrated with lithium salts and ethylene and ethyl methyl carbonate. Ionic conductivities of these hybrid films were measured from ?20°C to 40°C. Conductivities as high as 2.4 × 10?3 S/cm are observed at room temperature. The electrochemical stability of hybrid materials was studied by cyclic voltammetry.  相似文献   

9.
A series of sulfonated poly(aryl ether ketone)s (SPAEKs) were prepared by aromatic nucleophilic polycondensation of 2,6‐dihydroxynaphthalene with 5,5′‐carbonyl‐bis(2‐fluorobenzenesulfonate) and 4,4′‐difluorobenzophenone. The structure and degree of sulfonation (DS) of the SPAEKs were characterized using 1H NMR spectroscopy. The experimentally observed DS values were close to the expected values derived from the starting material ratios. The thermal stabilities of the SPAEKs were characterized by thermogravimetric analysis, which showed that in acid and sodium salt forms they were thermally stable in air up to about 240 and 380 °C, respectively. Transparent membranes cast from the directly polymerized SPAEKs exhibited good mechanical properties in both dry and hydrated states. The dependence of water uptake and of membrane swelling on the DS at different temperatures was studied. SPAEK membranes with a DS from 0.72 to 1.60 maintained adequate mechanical properties after immersion in water at 80 °C for 24 h. The proton conductivity of SPAEK membranes with different degrees of sulfonation was measured as a function of temperature. The proton conductivity of the SPAEK films increased with increased DS, and the highest room temperature conductivity (4.2 × 10?2 S/cm) was recorded for a SPAEK membrane with a DS of 1.60, which further increased to 1.1 × 10?1 S/cm at 80 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2866–2876, 2004  相似文献   

10.
There is much interest in the interactions between the active constituents of traditional Chinese medicine and biomolecules. By use of frontal analysis on an affinity column we have examined the binding interaction of berberine chloride (BC), a major active constituent of coptis, with bovine serum albumin (BSA) in 40 mM phosphate buffer, pH 7.0. Adsorption of BC on immobilized BSA was in accordance with the Langmuir isotherm, suggesting BC is binding to a single type of site on the immobilized BSA. The binding constant was 4.79 × 104 L mol?1 at 30 °C, less than the value of 6.61 × 104 L mol?1 obtained by fluorescence spectroscopy under the same buffer and temperature conditions. The effects of temperature on the retention, binding constant, and active binding sites, and on the percentage protein binding of BC, were also investigated. Thermodynamic measurements indicated that the increase in entropy was an important process promoting the interaction between BC and BSA.  相似文献   

11.
Solid polymer electrolyte membranes were prepared by complexing tetrapropylammoniumiodide (Pr4N+I?) salt with polyethylene oxide (PEO) plasticized with ethylene carbonate (EC), and these were used in photoelectrochemical (PEC) solar cells fabricated with the configuration glass/FTO/TiO2/dye/electrolyte/Pt/FTO/glass. The PEO/Pr4N+I?+I2?=?9:1 ratio gave the best room temperature conductivity for the electrolyte. For this composition, the plasticizer EC was added to increase the conductivity, and a further conductivity enhancement of four orders of magnitude was observed. An abrupt increase in conductivity occurs around 60–70 wt% EC; the room temperature conductivity was 5.4?×?10?7 S cm?1 for 60 wt% EC and 4.9?×?10?5 S cm?1 for the 70 wt% EC. For solar cells with electrolytes containing PEO/Pr4N+I?+I2?=?9:1 and EC, IV curves and photocurrent action spectra were obtained. The photocurrent also increased with increasing amounts of EC, up to three orders of magnitude. However, the energy conversion efficiency of this cell was rather low.  相似文献   

12.

The graft copolymerization of acrylonitrile (AN) and ethyl acrylate (EA) comonomers onto cellulose has been carried out using ceric ammonium nitrate (CAN) as an initiator in the presence of nitric acid at 35±0.1°C. The addition of ethyl acrylate as comonomer has shown a significant effect on overall and individual graft copolymerization of acrylonitrile on cellulose. The graft yield (%GY) and other grafting parameters viz. true grafting (%GT), graft conversion (%CG), cellulose number (Ng) and frequency of grafting (GF) were evaluated on varying the concentration of comonomers from 6.0–30.0×10?1 mol dm?3 and ceric (IV) ions concentration from 2.5–25×10?3 mol dm?3 at constant feed composition (fAN 0.6) and constant concentration of nitric acid (7.5×10?2 mol dm?3) in the reaction mixture. The graft yield (%GY) and other grafting parameters were optimal at 15×10?1 mol dm?3 concentration of comonomers and at 10×10?3 mol dm?3 concentration of ceric ammonium nitrate. The graft yield (%GY) and composition of grafted chains (FAN) was optimal at a feed composition (fAN) of 0.6. The energy of activation (Ea) for graft copolymerization has been found to be 16 kJ mol?1. The molecular weight (Mw) and molecular weight distribution (Mw/Mn) of grafted chains was determined by GPC and found to be optimum at 15×10?1 mol dm?3 concentration of comonomer in the reaction mixture. The composition of grafted chains (FAN) determined by IR method was used to calculate the reactivity ratios of monomers, which has been found to be 0.62 (r1) and 1.52 (r2), respectively for acrylonitrile (AN) and ethyl acrylate (EA) monomers used for graft copolymerization. The energy of activation for decomposition of cellulose and grafted cellulose was determining by using different models based on constant and different rate (β) of heating. Considering experimental observations, the reaction steps for graft copolymerization were proposed.  相似文献   

13.
The dimensional stability of adsorbent beads subjected to varying temperature conditions must be understood to assess the effect of thermal cycling on both the adsorbent and the structure that contains it. Most of the literature on the coefficient of thermal expansion (CTE) of adsorbents relates to zeolite crystals or clusters of crystals with application to membranes. Such crystals or powder materials have been shown to exhibit both positive and negative volume expansion coefficients depending upon the temperature range. This duality in the CTE with increasing temperature and the large variation in the CTE magnitude for a given zeolite structure suggest that the dimensional stability of zeolite crystals under varying thermal conditions is not likely a good indicator of the thermal stability of agglomerated zeolites. In this study, a method has been developed and applied to measure the CTE of activated alumina and 13X molecular sieve adsorbent beads. A McBain gravimetric microbalance was modified in a simple manner to be used as a dilatometer. The method was validated by measuring the CTE of a 316 stainless steel rod and showing that the measured CTE of this study agreed with the published CTE within 3.3 %. Average CTEs for alumina and 13X adsorbents were determined as 4.88 × 10?6 and 2.96 × 10?6 mm/mm/ °C, respectively for the range of temperature 20–400 °C.  相似文献   

14.
A newly-developed method of complete separation and sensitive determination of o-, m-, and p-aminobenzoic acid isomers was achieved by combining open-tubular columns for capillary electrochromatography (OT-CEC) and online sample stacking. In this study, spherical gold nanoparticles were modified by a covalent attachment of mono-6-thio-β-cyclodextrin, and OT-CEC was formed by immobilizing cyclodextrin-modified gold nanoparticles (CD-AuNP) on prederivatized 3-mercaptopropyl-trimethoxysilane fused-silica capillaries. Based on the theory of moving chemical reaction boundary, effects of several important factors such as the pH and concentration of running buffer and the conditions of stacking analytes were optimized. The optimized separations were carried out in 58 mmol/L HAc buffer at pH 3.0 using a capillary coated with CD-AuNP, while the optimized concentration was carried out in 50 mmol/L disodium hydrogen phosphate (pH 9.5). The linear ranges for m-, p-, and o-aminobenzoic acid were from 5.0 × 10?4–0.1, 5.0 × 10?4–0.1 and 1.0 × 10?4–0.1 mmol/L, respectively. And the detection limits (S/N = 3) were as low as 8.22 × 10?5, 8.21 × 10?5, and 3.76 × 10?5 mmol/L for m-, p-, and o-aminobenzoic acid, respectively. The run-to-run, day-to-day, and column-to-column reproducibilities of migration time were satisfactory with relative standard deviation values of less than 4.5 % in all cases. This method was successfully used in determining procaine hydrochloride injection sample with recoveries in the range of 96.1–106.6 % and relative standard deviations less than 5.0 %.  相似文献   

15.
Liquid chromatography with electrochemical detection (LC-ED), coupled with in vivo microdialysis sampling, has been used for analysis of thiols. An acetylene black–dihexadecyl hydrogen phosphate (AB–DHP) composite film-modified electrode was used as working electrode. The AB–DHP-modified electrode enabled efficient electrocatalytic oxidation of l-cysteine (l-Cys) and glutathione (GSH) with relatively high sensitivity, stability, and longevity. The peak currents of l-Cys and GSH were linear in the concentrations ranges 2.0 × 10?7–2.0 × 10?4 and 3.0 × 10?7–5.0 × 10?4 mol L?1, respectively, with calculated detection limits (S/N = 3) of 1.0 × 10?7 and 2.0 × 10?7 mol L?1, respectively. The method has been successfully used to measure the amounts of l-Cys and GSH in striatal microdialysate of freely moving rats.  相似文献   

16.
Highly crystalline samples of cellulose triacetate I (CTA I) were prepared from highly crystalline algal cellulose by heterogeneous acetylation. X‐ray diffraction of the prepared samples was carried out in a helium atmosphere at temperatures ranging from 20 to 250 °C. Changes in seven d‐spacings were observed with increasing temperature due to thermal expansion of the CTA I crystals. Unit cell parameters at specific temperatures were determined from these d‐spacings by the least squares method, and then thermal expansion coefficients (TECs) were calculated. The linear TECs of the a, b, and c axes were αa = 19.3 × 10?5 °C?1, αb = 0.3 × 10?5 °C?1 (T < 130 °C), αb = ?2.5 × 10?5 °C?1 (T > 130 °C), and αc = ?1.9 × 10?5 °C?1, respectively. The volume TEC was β = 15.6 × 10?5 °C?1, which is about 1.4 and 2.2 times greater than that of cellulose Iβ and cellulose IIII, respectively. This large thermal expansion could occur because no hydrogen bonding exists in CTA I. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 517–523, 2009  相似文献   

17.
ABSTRACT

A simple, highly sensitive voltammetric method for the determination of urapidil at poly(sodium4-styrenesulfonate) functionalized graphene-modified electrode (PSS-Gr/GCE) was described. Based on the PSS-Gr composites-modified glassy carbon electrode as a simple voltammetric sensor, it exhibited good conductivity and high sensitivity to urapidil. Under the optimize condition, a good linear relationship was obtained between peak currents and urapidil concentrations in the wider range of 2.0 × 10?9–8.0 × 10?8 mol L?1 and 2.0 × 10?7–2.0 × 10?5 mol L?1 with detection limit of 8 × 10?10 mol L?1 (S/N = 3). Based on the high sensitivity and good selectivity of the proposed electrode, the proposed method could apply to the detect of urapidil in urapidil sustained release tablets with satisfactory results.  相似文献   

18.
In this work, sulfonic acid functionalized hollow silica spheres (SAFHSS)/Nafion® composite membranes were prepared by a recasting procedure. The influences of temperature on water uptake, swelling degree, and proton conductivity of the composite membranes were studied. In comparison with the pure recast Nafion® membrane, it was found that water uptake of composite membranes increased with increasing SAFHSS loading at all temperature studied. The swelling degree of SAFHSS/Nafion® composite membranes with 10~15 wt % SAFHSS loading was lower than that of the pure recast Nafion® at all temperatures in the study. The proton conductivity of SAFHSS/Nafion® composite membranes was constantly higher than that of the pure recast Nafion® at all temperatures (50~130 °C). In a range from 50 to 130 °C, the highest conductivity of composite membranes was obtained when 10 wt % SAFHSS was loaded. The maximum conductivity reached 0.1 S cm?1 at 100% relative humidity and 100 °C, even the temperature reached to 130 °C, the conductivity of the composite membranes with 10 wt % SAFHSS was still as high as 4.4 × 10?2 S cm?1 at 100% relative humidity, whereas the conductivity of the pure recast Nafion® was only 2.2 × 10?3 S cm?1. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2647–2655, 2009  相似文献   

19.
The present study focuses on the proton-conducting polymer electrolytes; poly (N-vinyl pyrrolidone)–ammonium thiocyanate and poly (N-vinyl pyrrolidone)–ammonium acetate prepared by solution casting technique. The XRD analysis indicates the amorphous nature of the polymer electrolytes. The Raman spectra of the C=O vibration of pure polymer PVP at 1,663 cm?1 has been appeared as doublet in the polymer electrolytes. The introduction of this new peak in the salt-doped polymer electrolytes may be due to interaction of the cation with the polymer. The room temperature ionic conductivity σ 303κ has been found to be high, 1.7?×?10?4 S cm?1 for 80 mol% PVP–20 mol% NH4SCN and 1.5?×?10?6 S cm?1 for 75 mol% PVP–25 mol% CH3COONH4. The polymer electrolytes have been tested for their application in Zn–air battery.  相似文献   

20.
A composite electrode was fabricated from Cu2O powder, carboxyl-functionalized multi-wall carbon nanotubes (MWCNT-COOH), and paraffin oil in the proportions 51:17:32 (w/w). This composite electrode was used for amperometric detection (CZE–AD) in simultaneous capillary zone electrophoretic analysis of chlorogenic acid, rutin, sucrose, glucose, mannose, and fructose in tobacco samples. Under the optimum conditions, the six analytes could be separated in 100 mmol L?1 NaOH buffer within 30 min. Good linearity was achieved in the range 1 × 10?7–1 × 10?4 mol L?1 for the two polyphenols and 5 × 10?6–1 × 10?3 mol L?1 for the four sugars. The detection limits (S/N = 3) for the polyphenols and sugars were as low as 10?8 mol L?1 and 10?6 mol L?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号