首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The pyridine‐2‐carbaldehyde semicarbazone ligand (HL) reacts with iron(II) and copper(II) perchlorates in boiling ethanol to yield red‐violet [FeII(HL)2](ClO4)2·H2O ( 1 ) and light‐green crystals [CuII(HL)2](ClO4)2·H2O ( 2 ). The crystals are triclinic with the metal ions in an octahedral environment, coordinated to two nitrogen and one oxygen‐donor atom from HL. Electronic, magnetic and electrochemical properties are presented as well.  相似文献   

2.
Two new trinuclear complexes [CuII(NiIIX1)2(C2H5OH)2]· (ClO4)2·2(CH3OH) ( 1 ) and [CuII(NiIIX2)2(H2O)]·(ClO4)2· 0.75(H2O) ( 2 ) (X1 = dianion of 5,6;13,14‐dibenzo‐7,12‐bis(ethoxycarboxyl)‐9‐methyl‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca‐7,11‐diene. X2 = dianion of 5,6;13,14‐dibenzo‐9,10‐cyclohexano‐7,12‐bis(ethoxycarboxyl)‐2,3‐dioxo‐1,4,8,11‐tetraazacyclotetradeca7,11‐diene.) have been synthesized and characterized by single crystal X‐ray analysis, elemental analysis, IR, UV and EPR spectroscopies. The complexes consist of NiIICuIINiII heteronuclear cationic entities. The central CuII atom of 1 lies in an octahedral coordination environment, while that of 2 resides in a square‐pyramidal coordination sphere. The adjacent trinuclear units of 1 are linked together through π‐π stacking interactions resulting in a 1D supramolecular chain, whereas the π‐π stacking interactions between the contiguous units of 2 lead to a 2D structure. The EPR spectra of the two complexes show a signal of an axially elongated octahedral CuII system in 1 and an axially elongated square‐pyramidal CuII system in 2 , respectively. The hyperfine splitting of the CuII atoms (ICu = 3/2) has also been observed in the EPR spectra.  相似文献   

3.
Two novel five‐coordinate zinc(II) complexes with the tripod ligand tris(N‐methylbenzimidazol‐2‐ylmethyl)amine (Mentb) and two different α,β‐unsaturated carboxylates, with the composition [Zn(Mentb)(acrylate)] (ClO4)·DMF·1.5CH3OH ( 1 ) and [Zn(Mentb)(cinnamate)](ClO4)·2DMF·0.5CH3OH ( 2 ), were synthesized and characterized by means of elemental analyses, electrical conductivity measurements, IR, UV, and 1H NMR spectra. The crystal structure of two complexes have been determined by a single‐crystal X‐ray diffraction method, and show that the ZnII atom is bonded to a Mentb ligand and a α,β‐unsaturated carboxylate molecule through four N atoms and one O atom, resulting in a distorted trigonal‐bipyramidal coordination [τ( 1 ) = 0.853, τ( 2 ) = 0.855], with approximate C3 symmetry.  相似文献   

4.
Three novel copper(II) complex [Cu2(bpa)(μ‐PhCO2)](ClO4)2 ( 1 ), [Cu2(bpa) (μ‐pyz)](ClO4)2 ( 2 ), and [Cu(Hbpa)](ClO4)2·2CH3CN ( 3 ) have been synthesized by the reaction of Hbpa with Cu(ClO4)2·6H2O in the presence and absence of exogenous ligands (where Hbpa = N, N'‐bis(picolinidene‐N‐oxide)‐2‐hydroxy‐1, 3‐diamino‐propane). Molecular structures of these compounds have been elucidated by single crystal X‐ray diffraction. 1 and 2 are both binuclear complexes in which two copper atoms are linked by the endogenous alkoxide oxygen and the exogenous benzoate and pyrazolate ligands, respectively. 3 consists of a one‐dimensional polymeric structure, in which Hbpa functions as a bridging mode.  相似文献   

5.
Assembly of bidentate ligand 1‐(1‐imidazolyl)‐4‐(imidazol‐1‐ylmethyl)benzene (IIMB) with varied metal salts of ZnII, CdII and PbII provide three new complexes, [Zn(IIMB)2](ClO4)2·2H2O ( 1 ), [Cd(IIMB)2(SCN)2] ( 2 ) and [Pb(IIMB)2(SCN)](SCN) ( 3 ). Single crystal X‐ray diffraction studies revealed that complexes 1 and 2 display a similar one‐dimensional double stranded chain structure, while complex 3 is a slight distorted rhombohedral grid network with (4,4) topology. The results indicate that the coordination geometry of the metal ion and the counter anion have great impact on the structure of the complexes. In addition, the photoluminescence properties of ligand IIMB and complexes 1 – 3 were studied in the solid state at room temperature.  相似文献   

6.
The reaction of the ‘oximato’‐ligand precursor A (Fig. 1) and metal salts with KCN gave two mononuclear complexes [ML(CN)(H2O)n](ClO4) ( 1 and 2 ; L={N‐(hydroxy‐κO)‐α‐oxo‐N′‐[(pyridin‐2‐yl‐κN)methyl[1,1′‐biphenyl]‐4‐ethanimidamidato‐κN′}; M=CoII ( 1 ), CuII ( 2 ); n=2 for CoII, n=0 for CuII; Figs. 2 and 3). The new cyano‐bridged pentanuclear ‘oximato’ complexes [{ML(H2O)n(NC)}4M1(H2O)x](ClO4)2 ( 3 – 6 ) and trinuclear complexes [{ML(H2O)n(NC)}2M1L](ClO4) ( 7 – 10 ) ([M1=MnII, CuII; x=2 for MnII, x=0 for CuII] were synthesized from mononuclear complexes and characterized by elemental analyses, magnetic susceptibility, molar conductance, and IR and thermal analysis. The four [ML(CN)(H2O)n]+ moieties are connected by a metal(II) ion in the pentanuclear complexe 3 – 6 , each one involving four cyano bridging ligands (Fig. 4). The central metal ion displays a square‐planar or octahedral geometry, with the cyano bridging ligands forming the equatorial plane. The axial positions are occupied by two aqua ligands in the case of the central Mn‐atom. The two [ML(CN)(H2O)n]+ moieties and an ‘oximato’ ligand are connected by a metal(II) ion in the trinuclear complexes 7 – 10 , each one involving two cyano bridging ligands (Fig. 5). The central metal ions display a distorted square‐pyramidal geometry, with two cyano bridging ligands and the donor atoms of the tridentate ‘oximato’ ligand. Moreover catalytic activities of the complexes for the disproportionation of hydrogen peroxide (H2O2) were also investigated in the presence of 1H‐imidazole. The synthesized homopolynuclear CuII complexes 6 and 10 displayed eficiency in disproportion reactions of H2O2 producing H2O and dioxygen thus showing catalase‐like activity.  相似文献   

7.
The synthetic investigation of the CuII/maleamate(−1) ion (HL)/N,N′,N′′-chelate general reaction system has allowed access to compounds [Cu2(HL)2(bppy)2](ClO4)2·H2O (1·H2O), [Cu(HL)(bppy)(ClO4)] (2) and [Cu(HL)(terpy)(H2O)](ClO4) (4) (bppy = 2,6-bis(pyrazol-1-yl)pyridine, terpy = 2,2′;6′,2′′-terpyridine). In the absence of externally added hydroxides, compound [Cu2(L′)2(bppy)2](ClO4)2 (3) was obtained from MeOH solutions; L′ is the monomethyl maleate(−1) ligand which is formed in situ via the CuII-assisted HL → L′ transformation. In the case of tptz-containing (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine) reaction systems, the CuII-assisted hydrolysis of tptz to pyridine-2-carboxamide (L1) afforded complex [Cu(L1)2(NO3)2] (5). The crystal structures of 15 are stabilized by intermolecular hydrogen bonding and π–π stacking interactions. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

8.
Reaction of [CuII(cyclam)](ClO4)2 or [NiII(cyclam)](ClO4)2 in DMF with aqueous 4-hydroxy-3-(4-sulfonato-1-naphthylazo)naphthalen-1-sulfonate disodium salt (carmoisine) yielded coordination polymers {[CuII(cyclam)](carmoisine dianion)(H2O)5}n and powder {[NiII(cyclam)](carmoisine dianion)}n, respectively (cyclam = 1,4,8,11-tetrazacyclotetradecane). They were characterized by powder X-ray diffraction, IR, Raman spectrometry and TGA.  相似文献   

9.
The reaction of 1H‐tetrazole‐1‐acetic acid (Htza) and perchloric acid with cuprous chloride with slow evaporation at room temperature gave a novel 3D porous CuII coordination polymer, [Cu2(tza)4] · ClO4 · 4H2O ( 1 ), (tza = tetrazole‐1‐acetate). The structure exhibits an unusual 3D microporous coordination framework built up by four coordinated CuII nodes and bidentate bridging tza ligands with lvt‐type topology. Furthermore, the magnetic properties of complex 1 were also investigated.  相似文献   

10.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

11.
Syntheses, and electrochemical properties of two novel complexes, [Cu(phendio)(L ‐Phe)(H2O)](ClO4) ·H2O (1) and [Ni(phendio)(Gly)(H2O)](ClO4)·H2O (2) (where phendio = 1,10‐phenanthroline‐5,6‐dione, L ‐Phe = L ‐phenylalanine, Gly = glycine), are reported. Single‐crystal X‐ray diffraction results of (1) suggest that this complex structure belongs to the orthorhombic crystal system. The electrochemical properties of free phendio and these complexes in phosphate buffer solutions in a pH range between 2 and 9 have been investigated using cyclic voltammetry. The redox potential of these compounds is strongly dependent on the proton concentration in the range of ? 0.3–0.4 V vs SCE (saturated calomel reference electrode). Phendiol reacts by the reduction of the quinone species to the semiquinone anion followed by reduction to the fully reduced dianion. At pH lower than 4 and higher than 4, reduction of phendio proceeds via 2e?/3H+ and 2e?/2H+ processes. For complexes (1) and (2), being modulated by the coordinated amino acid, the reduction of the phendio ligand proceeds via 2e?/2H+ and 2e?/H+ processes, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A mononuclear complex [Cu(HL · S)2(NO3)2] ( 1 ) and a one‐ dimensional coordination polymer [Cu(HL · S)Cl2]n ( 2 ) [HL · S = 4‐(pyridin‐2‐ylmethyl)tetrahydro‐2H‐thiopyran‐4‐ol] showcase the structure‐directing role of the counterions in their formation reaction: monodentate ligation of NO3 and Cl induces an octahedral (with two HL · S per Cu in 1 ) or trigonal‐bipyramidal (with one HL · S per Cu in 2 ) CuII coordination environment. In contrast to 1 exhibiting no coordinative metal–sulfur bonds in the crystal lattice (space group P21/c), 2 (P21/c) features intermolecular Cu–S contacts of 2.3188(7) Å. The coordination compounds are thermally stable up to ca. 160 °C. Whereas 1 demonstrates the spin‐like behavior of an isolated central CuII ion, compound 2 exhibits weak antiferromagnetic intra‐chain coupling with J ≈ –2.1 cm–1 between neighboring CuII ions.  相似文献   

13.
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the four secondary amine groups of the macrocyclic precursor L using o‐nitrobenzylbromide (L1) and p‐nitrobenzylbromide (L2). Nitrates and perchlorates of CuII, NiII and CoII were used to synthesize the metal complexes of both ligands and the complexes were characterized by microanalysis, MS‐FAB, conductivity measurements, IR and UV‐Vis spectroscopy and magnetic studies. The crystal structures of L1, [CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN, [CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH and [NiL2](ClO4)2·3CH3CN·H2O were determined by single crystal X‐ray crystallography. These structural analysis reveal the free ligand L1, three mononuclear endomacrocyclic complexes {[CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN and [NiL2](ClO4)2·3CH3CN·H2O} and one binuclear complex {[CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH} in which one of the metals is in the macrocyclic framework and the other metal is outside the ligand cavity and coordinated to four nitrate ions.  相似文献   

14.
The asymmetric unit of {[4,7‐bis(2‐amino­ethyl)‐1,4,7‐tri­aza­cyclo­nonan‐1‐yl]acetato}zinc(II) triaqua{μ‐[4,7‐bis(2‐amino­ethyl)‐1,4,7‐tri­aza­cyclo­nonan‐1‐yl]acetato}lithium(I)zinc(II) chloride diperchlorate, [Zn(C12H26N5O2)][LiZn(C12H26N5O2)(H2O)3]Cl(ClO4)2, obtained from the reaction between the lithium salt of 4,7‐bis(2‐amino­ethyl)‐1,4,7‐tri­aza­cyclo­nonane‐1‐acetate and Zn(ClO4)2, contains two ZnII complexes in which each ZnII ion is six‐coordinated by five N‐atom donors and one O‐­atom donor from the ligand. One carboxyl­ate O‐atom donor is not involved in coordination to a ZnII atom, but coordinates to an Li+ ion, the tetrahedral geometry of Li+ being completed by three water mol­ecules. The two complexes are linked via a hydrogen bond between a primary amine N—H group and the carboxyl­ate‐O atom not involved in coordination to a metal.  相似文献   

15.
The title compound, [Zn(C29H29N5)2](ClO4)2·2CH3NO2, contains a ZnII ion showing only small deviations from local D2d symmetry. The lower rhombicity exhibited by this complex compared with that of its CuII congener suggests that the highly rhombic stereochemistry exhibited by the latter is largely imposed by the stereoelectronic preferences of the CuII ion.  相似文献   

16.
The hexadentate ligand all‐cis‐N1,N2‐bis(2,4,6‐trihydroxy‐3,5‐diaminocyclohexyl)ethane‐1,2‐diamine (Le) was synthesized in five steps with an overall yield of 39 % by using [Ni(taci)2]SO4?4 H2O as starting material (taci=1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol). Crystal structures of [Na0.5(H6Le)](BiCl6)2Cl0.5?4 H2O ( 1 ), [Ni(Le)]‐ Cl2?5 H2O ( 2 ), [Cu(Le)](ClO4)2?H2O ( 3 ), [Zn(Le)]CO3?7 H2O ( 4 ), [Co(Le)](ClO4)3 ( 5 c ), and [Ga(H?2Le)]‐ NO3?2 H2O ( 6 ) are reported. The Na complex 1 exhibited a chain structure with the Na+ cations bonded to three hydroxy groups of one taci subunit of the fully protonated H6(Le)6+ ligand. In 2 , 3 , 4 , and 5 c , a mononuclear hexaamine coordination was found. In the Ga complex 6 , a mononuclear hexadentate coordination was also observed, but the metal binding occurred through four amino groups and two alkoxo groups of the doubly deprotonated H?2(Le)2?. The steric strain within the molecular framework of various M(Le) isomers was analyzed by means of molecular mechanics calculations. The formation of complexes of Le with MnII, CuII, ZnII, and CdII was investigated in aqueous solution by using potentiometric and spectrophotometric titration experiments. Extended equilibrium systems comprising a large number of species were observed, such as [M(Le)]2+, protonated complexes [MHz(Le)]2+z and oligonuclear aggregates. The pKa values of H6(Le)6+ (25 °C, μ=0.10 m ) were found to be 2.99, 5.63, 6.72, 7.38, 8.37, and 9.07, and the determined formation constants (log β) of [M(Le)]2+ were 6.13(3) (MnII), 20.11(2) (CuII), 13.60(2) (ZnII), and 10.43(2) (CdII). The redox potentials (vs. NHE) of the [M(Le)]3+/2+ couples were elucidated for Co (?0.38 V) and Ni (+0.90 V) by cyclic voltammetry.  相似文献   

17.
Two μ‐oxamido‐bridged dicopper(II) complexes, namely [Cu2(hmpoxd)(H2O)(phen)](ClO4) ( 1 ) and [Cu2(papo)(H2O)(phen)](ClO4)·2H2O ( 2 ), where H3hmpoxd and H3papo represent N‐(2‐hydroxy‐5‐methylphenyl)‐N′‐[3‐(dimethylamino)propyl]oxamide and N‐(2‐hydroxylphenyl)‐N′‐(3‐aminopropyl)oxamide, respectively, and phen represents 1,10‐phenanthroline, were synthesized. Single‐crystal X‐ray crystallography and other methods revealed that the two copper(II) ions in complex 1 are bridged by the cis‐hmpoxd3? with Cu···Cu separation of 5.1896(7) Å, in which the inner (Cu1) and outer (Cu2) copper(II) atoms are located in square‐planar and square‐pyramidal geometries, respectively. To evaluate the effects of bridging ligand hydrophobicity on DNA/protein binding and potential anticancer activities, comparative studies of the reactivity towards herring sperm DNA and protein bovine serum albumin (BSA) as well as cytotoxicity of complex 1 with our previously reported complex 2 were conducted theoretically and experimentally. The results indicate that the two complexes can interact interactively with DNA, and bind to BSA via the binding sites Trp213 for 1 and Trp134 for 2 . Interestingly, the in vitro anticancer activities and DNA/protein binding affinities consistently follow the order of 1 > 2 .  相似文献   

18.
Four novel metal complexes [Cd(L)Cl](BF4)·H2O ( 1 ), [Cd(L)Br]2[CdBr4]·2H2O ( 2 ), [Cu(L)Br]Br ( 3 ), and [Cu(L)](NO3)2 ( 4 ) were prepared by the reactions of ligand N1‐(2‐aminoethyl)‐N1‐(2‐imidazolethyl)‐ethane‐1,2‐diamine (L) with metal salts under different reaction conditions. All of these complexes exhibit 1D chains, but different structures. The results showed that the pH value of the reaction solution and counter ions have remarkable impact on the structure of the complexes. Furthermore, complexes 1 and 2 represent fluorescence properties in the solid state at room temperature.  相似文献   

19.
In the title mononuclear complex, [Cu(C5H9N3)(C10H15N5)](ClO4)2, the CuII centre is surrounded by two N‐donor ligands, which impose a square‐pyramidal environment on the metal. The new tridentate ligand [2‐(imidazol‐4‐yl)­ethyl]­[(1‐methyl­imidazol‐2‐yl)­methyl]­amine (HISMIMA) lies in the basal plane, while the hist­amine ligand occupies the apical and one of the basal positions around the CuII ion.  相似文献   

20.
The reaction of the diazine ligand 3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazole (pod, C12H8N4O), with Cu(CF3SO3)2 or Ni(ClO4)2 afforded the title complexes di­aqua­bis­[3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazole‐N2,N3]copper(II) bis­(tri­fluoro­methane­sul­fon­ate), [Cu(pod)2(H2O)2](CF3SO3)2, and di­aqua­bis­[3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazo­le‐N2,N3]­nickel(II) diperchlorate, [Ni(pod)2(H2O)2](ClO4)2. Both complexes present a crystallographically centrosymmetric mononuclear cation structure which consists of a six‐coordinated CuII or NiII ion with two pod mol­ecules acting as bidentate ligands and two axially coordinated water mol­ecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号