首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4‐b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2‐chloroquinoline‐3‐carbaldehyde and 4‐methylphenylhydrazinium chloride gives (E)‐1‐[(2‐chloroquinolin‐3‐yl)methylidene]‐2‐(4‐methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1‐(4‐methylphenyl)‐4,9‐dihydro‐1H‐pyrazolo[3,4‐b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2‐chloroquinoline‐3‐carbaldehyde or 2‐chloro‐6‐methylquinoline‐3‐carbaldehyde give, respectively, 1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C16H11N3, (III), which crystallizes in the space group Pbcn as a nonmerohedral twin having Z′ = 3, or 6‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C17H13N3, (IV), which crystallizes in the space group R. The molecules of compound (I) are linked into sheets by a combination of N—H…N and C—H…π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H…N and C—H…π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H…π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H…π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H…π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having (S6) symmetry, which are themselves linked into a three‐dimensional array by π–π stacking interactions.  相似文献   

2.
Both 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methylphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile and 6‐(1H‐indol‐3‐yl)‐3‐methyl‐4‐(4‐methoxyphenyl)‐1‐phenyl‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile crystallize from dimethylformamide solutions as stoichiometric 1:1 solvates, viz. C29H21N5·C3H7NO, (I), and C29H21N5O·C3H7NO, (II), respectively; however, 6‐(1H‐indol‐3‐yl)‐3‐methyl‐1‐phenyl‐4‐(3,4,5‐trimethoxyphenyl)‐1H‐pyrazolo[3,4‐b]pyridine‐5‐carbonitrile, C31H25N5O3, (III), crystallizes in the unsolvated form. The heterocyclic components of (I) are linked by C—H...π(arene) hydrogen bonds to form cyclic centrosymmetric dimers, from which the solvent molecules are pendent, linked by N—H...O hydrogen bonds. In (II), the heterocyclic components are linked by a combination of C—H...N and C—H...π(arene) hydrogen bonds into chains containing two types of centrosymmetric ring, and the pendent solvent molecules are linked to these chains by N—H...O hydrogen bonds. Molecules of (III) are linked into simple C(12) chains by an N—H...O hydrogen bond, and these chains are weakly linked into pairs by an aromatic π–π stacking interaction.  相似文献   

3.
A simple and efficient synthesis of 4‐aryl‐3‐methyl‐1‐phenyl‐1H‐benzo[h]pyrazolo[3,4‐b]quinoline‐5,10‐diones has been accomplished by the one‐pot condensation reaction of 3‐methyl‐1‐phenyl‐1H‐pyrazol‐5‐amine, aldehydes and 2‐hydroxynaphthalene‐1,4‐dione in water in the presence of diammonium hydrogen phosphate.  相似文献   

4.
The tricyclic isatin, 5,6‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinoline‐1,2‐dione, undergoes three‐component, one‐pot reactions with 1‐aryl‐3‐methylpyrazole‐5‐amines and cyclohexane‐1,3‐diones producing hexacyclic spiro products, hexahydrospiro[pyrazolo[3,4‐b]quinoline‐4,1‐pyrrolo[3,2,1‐ij]quinoline‐2′,5(1H,4′H)‐diones]. Comparable spiro condensation products are also obtained using 4‐hydroxy‐2H‐1‐benzopyran‐2‐one in place of cyclohexane‐1,3‐diones.  相似文献   

5.
3‐tert‐Butyl‐7‐(4‐methoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H37N3O3, (I), 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C32H39N3O4, (II), 3‐tert‐butyl‐4′,4′‐dimethyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H35N3O4, (III), and 3‐tert‐butyl‐4′,4′‐dimethyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione ethanol 0.67‐solvate, C33H41N3O5·0.67C2H6O, (IV), all contain reduced pyridine rings having half‐chair conformations. The molecules of (I) and (II) are linked into centrosymmetric dimers and simple chains, respectively, by C—H...O hydrogen bonds, augmented only in (I) by a C—H...π hydrogen bond. The molecules of (III) are linked by a combination of C—H...O and C—H...π hydrogen bonds into a chain of edge‐fused centrosymmetric rings, further linked by weak hydrogen bonds into supramolecular arrays in two or three dimensions. The heterocyclic molecules in (IV) are linked by two independent C—H...O hydrogen bonds into sheets, from which the partial‐occupancy ethanol molecules are pendent. The significance of this study lies in its finding of a very wide range of supramolecular aggregation modes dependent on rather modest changes in the peripheral substituents remote from the main hydrogen‐bond acceptor sites.  相似文献   

6.
Molecules of 1,3‐dimethyl‐7‐(4‐methylphenyl)pyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C16H15N3O2, (I), are linked by paired C—H...O hydrogen bonds to form centrosymmetric R22(10) dimers, which are linked into chains by a single π–π stacking interaction. A single C—H...O hydrogen bond links the molecules of 7‐(biphenyl‐4‐yl)‐1,3‐dimethylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C21H17N3O2, (II), into C(10) chains, which are weakly linked into sheets by a π–π stacking interaction. In 7‐(4‐fluorophenyl)‐3‐methylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C14H10FN3O2, (III), an N—H...O hydrogen bond links the molecules into C(6) chains, which are linked into sheets by a π–π stacking interaction. The molecules of 7‐(4‐methoxyphenyl)‐3‐methylpyrido[2,3‐d]pyrimidine‐2,4(1H,3H)‐dione, C15H13N3O3, (IV), are also linked into C(6) chains by an N—H...O hydrogen bond, but here the chains are linked into sheets by a combination of two independent C—H...π(arene) hydrogen bonds.  相似文献   

7.
β‐Lapachone     
The most remarkable aspect of the crystal structure of the title compound (systematic name: 3,4‐dihydro‐2,2‐dimethyl‐2H‐naphtho[1,2‐b]pyran‐5,6‐dione), C15H14O3, is that a π‐stacking inter­action is present between the two naphthalene ring systems of symmetry‐related mol­ecules. Apart from these π–π inter­actions, different mol­ecules are held together by weak C—H⋯O hydrogen‐bonding inter­actions.  相似文献   

8.
In both 2,5‐dimethyl‐6,7‐dihydrobenzo[h]pyrazolo[1,5‐a]quinazoline, C16H15N3, (I), and 2‐tert‐butyl‐5‐methyl‐6,7‐dihydrobenzo[h]pyrazolo[1,5‐a]quinazoline, C19H21N3, (II), which crystallizes with Z′ = 2 in the space group P, the non‐aromatic carbocyclic rings adopt screw‐boat conformations. The molecules of (I) are linked into chains of rings by a combination of C—H...N and C—H...π(arene) hydrogen bonds, while in (II) there are no hydrogen bonds of any kind.  相似文献   

9.
Dibenz[b,f]azepine (DBA) is a privileged 6‐7‐6 tricyclic ring system of importance in both organic and medicinal chemistry. Benzo[b]pyrimido[5,4‐f]azepines (BPAs), which also contain a privileged 6‐7‐6 ring system, are less well investigated, probably because of a lack of straightforward and versatile methods for their synthesis. A simple and versatile synthetic approach to BPAs based on intramolecular Friedel–Crafts alkylation has been developed. A group of closely‐related benzo[b]pyrimido[5,4‐f]azepine derivatives, namely (6RS)‐4‐chloro‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3, (I), (6RS)‐4‐chloro‐8‐hydroxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3O, (II), (6RS)‐4‐<!?tlsb=‐0.14pt>chloro‐8‐methoxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C15H16ClN3O, (III), and (6RS)‐4‐chloro‐8‐methoxy‐6,11‐dimethyl‐2‐phenyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C21H20ClN3O, (IV), has been prepared and their structures compared with the recently published structure [Acosta‐Quintero et al. (2015). Eur. J. Org. Chem. pp. 5360–5369] of (6RS)‐4‐chloro‐2,6,8,11‐tetramethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, (V). All five compounds crystallize as racemic mixtures and they have very similar molecular conformations, with the azepine ring adopting a boat‐type conformation in each case, although the orientation of the methoxy substituent in each of (III) and (IV) is different. The supramolecular assemblies in (II) and (IV) depend upon hydrogen bonds of the O—H...N and C—H...π(arene) types, respectively, those in (I) and (V) depend upon π–π stacking interactions involving pairs of pyrimidine rings, and that in (III) depends upon a π–π stacking interaction involving pairs of phenyl rings. Short C—Cl...π(pyrimidine) contacts are present in (I), (II) and (IV) but not in (III) or (V).  相似文献   

10.
A three‐component reaction for the synthesis of new coumarin‐fused tetracyclic system from 4‐hydroxycoumarin, aldehydes, and 5‐aminopyrazoles/5‐aminoisoxazole is described. In the presence of acetic acid, 4,7‐dihydro‐1H‐pyrazolo[3,4‐b]pyridines ( 4 ) and pyrazolo[3,4‐b]pyridines ( 5 ) were obtained in acetonitrile and dimethylsulfoxide medium, respectively. The reaction gave rise to 4,5‐dihydro‐1H‐pyrazolo[3,4‐b]pyridin‐6(7H)‐ones ( 6 ) in acetic acid–ethanol combination system, which involved the C–O bond cleavage. 4‐Hydroxy‐6‐methyl‐2H‐pyran‐2‐one and acenaphthylene‐1,2‐dione were also examined, affording the corresponding C–O bond cleavage products. Mechanism indicates that the reaction is reversible in acetic acid–ethanol combination system.  相似文献   

11.
Six closely related pyrazolo[3,4‐b]pyridine derivatives, namely 6‐chloro‐3‐methyl‐1,4‐diphenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C20H14ClN3O, (I), 6‐chloro‐3‐methyl‐4‐(4‐methylphenyl)‐1‐phenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C21H16ClN3O, (II), 6‐chloro‐4‐(4‐chlorophenyl)‐3‐methyl‐1‐phenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C20H13Cl2N3O, (III), 4‐(4‐bromophenyl)‐6‐chloro‐3‐methyl‐1‐phenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C20H13BrClN3O, (IV), 6‐chloro‐4‐(4‐methoxyphenyl)‐3‐methyl‐1‐phenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C21H16ClN3O2, (V), and 6‐chloro‐3‐methyl‐4‐(4‐nitrophenyl)‐1‐phenylpyrazolo[3,4‐b]pyridine‐5‐carbaldehyde, C20H13ClN4O3, (VI), which differ only in the identity of a single small substituent on one of the aryl rings, crystallize in four different space groups spanning three crystal systems. The molecules of (I) are linked into a chain of rings by a combination of C—H...N and C—H...π(arene) hydrogen bonds; those of (II), (IV) and (V), which all crystallize in the space group P, are each linked by two independent C—H...O hydrogen bonds to form chains of edge‐fused rings running in different directions through the three unit cells; the molecules of (III) are linked into complex sheets by a combination of two C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond; finally, the molecules of (VI) are linked by a single C—H...O hydrogen bond to form a simple chain.  相似文献   

12.
An efficient and green reactions of isatins, 3‐amine‐1H‐pyrazole (5‐methyl‐1H‐pyrazol‐3‐amine) and 1,3‐diketone in aqueous medium for the synthesis of novel 1′,7′,8′,9′‐tetrahydrospiro[indoline‐3,4′‐pyrazolo[3,4‐b]quinoline]‐2,5′(6′H)‐dione derivatives were reported in this research. The advantages of this reaction are simple operation, mild‐reaction conditions, wide scope substrate, high yields, and friendly environment. The products were confirmed by IR, 1H NMR, 13C NMR, and HRMS.  相似文献   

13.
The crystal structure of 4,6‐bis(methylsulfanyl)‐1‐phthalimidopropyl‐1H‐pyrazolo[3,4‐d]pyrimidine, C18H17N5O2S2, (VI), reveals an unusual folded conformation due to an apparent intramolecular C—H⃛π interaction between the 6‐methyl­­sul­fanyl and phenyl groups. However, the closely related compound 6‐methyl­sulfanyl‐1‐phthalimido­propyl‐4‐(pyrroli­din‐1‐yl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C21H22N6O2S, (VII), exhibits a fully extended structure, devoid of any intramol­ecular C—H⃛π or π–π interactions. The crystal packing of both mol­ecules involves intermolecular stacking interactions due to aromatic π–π interactions. In addition, (VI) exhibits intermolecular C—H⃛O hydrogen bonding and (VII) exhibits dimerization of the mol­ecules through intermolecular C—H⃛N hydrogen bonding.  相似文献   

14.
The title compounds, namely 6‐methoxy‐3,3‐dimethyl‐3H‐benzo[f]chromene, C16H16O2, (III), and racemic 3‐bromo‐2,2,6,6‐tetramethyl‐3,4‐dihydro‐2H,6H‐1,5‐dioxatriphenylene, C20H21BrO2, (IV), were both synthesized in one‐step regioselective Wittig reactions from substituted 1,2‐naphthoquinones. The new ring in both compounds adopts a screw‐boat conformation. A single π–π stacking interaction links the molecules of (III) into centrosymmetric dimeric aggregates, and a single C—H...π(arene) hydrogen bond links the molecules of (IV) into centrosymmetric dimers.  相似文献   

15.
The butylidene‐linker models 1‐[2‐(2,6‐dimethylsulfanyl‐9H‐purin‐9‐yl)‐2‐methylidenepropyl]‐4,6‐bis(methylsulfanyl)‐1H‐pyrazolo[3,4‐d]pyrimidine, C18H20N8S4, (XI), 7,7′‐(2‐methylidenepropane‐1,3‐diyl)bis[3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one], C20H22N6O2S2, (XIV), and 7‐[2‐(4,6‐dimethylsulfanyl‐1H‐pyrazolo[3,4‐d]pyrimidin‐1‐yl)‐2‐methylidenepropyl]‐3‐methyl‐2‐methylsulfanyl‐3H‐pyrrolo[2,3‐d]pyrimidin‐4(7H)‐one, C19H21N7OS3, (XV), show folded conformations in solution, as shown by 1H NMR analysis. This folding carries over to the crystalline state. Intramolecular π–π interactions are observed in all three compounds, but only (XIV) shows additional intramolecular C—H...π interactions in the solid state. As far as can be established, this is the first report incorporating the pyrrolo[2,3‐d]pyrimidine nucleus for such a study. In addition to the π–π interactions, the crystal structures are also stabilized by other weak intermolecular C—H...S/N/O and/or S...N/S interactions.  相似文献   

16.
A simple and effective two‐step approach to tricyclic pyrimidine‐fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)‐8‐chloro‐6‐methyl‐1,2,6,7‐tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1‐hi]indole, C15H14ClN3, (I), the five‐membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)‐9‐chloro‐7‐methyl‐2,3,7,8‐tetrahydro‐1H‐pyrimido[5′,4′:6,7]azepino[3,2,1‐ij]quinoline, C16H16ClN3, (II). However, the seven‐membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi‐axial site in (I) but a quasi‐equatorial site in (II). The molecules of (I) are linked by C—H...N hydrogen bonds to form C(5) chains and inversion‐related pairs of chains are linked by a π–π stacking interaction. A combination of a C—H...π hydrogen bond and two C—Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.  相似文献   

17.
This paper describes the preparation of some pyrazolo[1,5‐a]‐, 1,2,4‐triazolo[1,5‐a]‐ and imidazo[1,2‐a]‐pyrimidines substituted on the pyrimidine moiety by a 4‐[(N‐acetyl‐N‐ethyl)amino]phenyl group. A new synthesis of related benzo[h]pyrazolo[1,5‐a]‐, benzo[h]pyrazolo[5,1‐b]‐ and benzo[h]1,2,4‐triazolo[1,5‐a]‐quinazolines is also reported.  相似文献   

18.
The molecules of the title compound, C26H19Cl2N5, are conformationally chiral, with none of the aryl groups coplanar with the pyrazolo[3,4‐b]pyridine core of the molecule. A single unique N—H...N hydrogen bond links the molecules into two symmetry‐related sets of C(11) chains running parallel to the [011] and [01] directions, respectively, and these two sets of chains are linked into a continuous three‐dimensional framework structure by a single unique C—H...N hydrogen bond which forms a chain parallel to the [100] direction.  相似文献   

19.
7‐Benzyl‐3‐tert‐butyl‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H25N3O, (I), and 3‐tert‐butyl‐7‐(4‐methylbenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O, (II), are isomorphous in the space group P21, and molecules are linked into chains by C—H...O hydrogen bonds. In each of 3‐tert‐butyl‐7‐(4‐methoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O2, (III), which has cell dimensions rather similar to those of (I) and (II), also in P21, and 3‐tert‐butyl‐1‐phenyl‐7‐[4‐(trifluoromethyl)benzyl]‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H24F3N3O, (IV), there are no direction‐specific interactions between the molecules. In 3‐tert‐butyl‐7‐(4‐nitrobenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H24N4O3, (V), a combination of C—H...O and C—H...N hydrogen bonds links the molecules into complex sheets. There are no direction‐specific interactions between the molecules of 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C24H29N3O3, (VI), but a three‐dimensional framework is formed in 3‐tert‐butyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H25N3O3, (VII), by a combination of C—H...O, C—H...N and C—H...π(arene) hydrogen bonds, while a combination of C—H...O and C—H...π(arene) hydrogen bonds links the molecules of 3‐tert‐butyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C25H31N3O4, (VIII), into complex sheets. In each compound, the oxazine ring adopts a half‐chair conformation, while the orientations of the pendent phenyl and tert‐butyl substituents relative to the pyrazolo[3,4‐d]oxazine unit are all very similar.  相似文献   

20.
Several derivatives of the new pyrimido[4′,5′:3,4]pyrazolo[1,2‐b]phthalazine‐4,7,12‐trione ring system have been prepared by the reaction of 3‐amino‐1‐aryl‐5,10‐dioxo‐5,10‐dihydro‐1H‐pyrazolo[1,2‐b]phthalazine‐2‐carbonitriles with aliphatic carboxylic acids in the presence of phosphoryl chloride (POCl3). The synthesized compounds were characterized on the basis of IR, 1H NMR, and 13C NMR spectral and microanalytical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号