首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research, the effect of the different concentrations of NaSnO3 as the electrolyte additive in 0.7 mol L?1 NaCl solution on the electrochemical performances of the magnesium-8lithium (Mg-8Li) electrode are investigated by methods of potentiodynamic polarization, potentiostatic current-time, electrochemical impedance technique, and scanning electron microscopy (SEM). The corrosion resistance of the Mg-8Li electrode is improved when Na2SnO3 is added into the electrolyte solution. The potentiostatic current-time curves show that the electrochemical behaviors of the Mg-8Li electrode in the electrolyte solution containing 0.20 mmol L?1 Na2SnO3 is the best. The electrochemical impedance spectroscopy results indicate that the polarization resistance of the Mg-8Li electrode decreases in the following order with the concentrations of Na2SnO3: 0.05 mmol L?1?>?0.00 mmol L?1?>?0.30 mmol L?1?>?0.10 mmol L?1?>?0.20 mmol L?1. The scanning electron microscopy studies indicate that the electrolyte additive prevents the formation of the dense oxide film on the alloy surface and facilitates the peeling off of the oxidation products.  相似文献   

2.
Synthesis of nanostructure hydrous iron–titanium binary mixed oxide (NHITBMO) had been reported by a simple method, and characterized by the X-ray diffraction (XRD), thermal analysis, transmission electron microscope (TEM), Föurier Transform Infrared (FTIR), surface area, and zero surface charge pH (pHzpc). The synthetic oxide was hydrated and microcrystalline with 77.8 m2 g?1 BET surface area. The particle size (nm) calculated using XRD peak table and TEM image was ~10–13 and 6–8, respectively. The pHzpc value was 6.0 (±0.05) for the oxide. The NHITBMO showed pH dependent good sorption affinity for arsenic from the aqueous solution and, the Langmuir monolayer capacity (mg g?1) was 80.0 and 14.6, respectively, for the As(III) and As(V). The pseudo-second order equation described the room temperature arsenic sorption kinetic data well. The minimum dose required was 1.6 g NHITBMO per L of water (Astotal = 0.24 mg L?1) to reduce the arsenic level below 0.01 mg L?1 in batch treatment process.  相似文献   

3.
ABSTRACT

A new catalytic kinetic fluorescent quenching method for the determination of trace gold(III) was investigated. The method was based on the catalytic effect of gold on oxidation of 3-(3′-methylphenyl)-5- (2′-arsenoxylphenylazo) rhodanine by hydrogen peroxide in potassium hydrogen phthalate–hydrochloric acid (pH = 3.4). Under the optimum conditions, the great decrease of fluorescence intensity has a linear relationship against the concentration of gold in the range of 0 to 12.0 µg·L?1 with a detection limit of 6.0 × 10?10g·L?1. The coexistent metal ions can be separated, and gold can be enriched by TBP resin of solid-phase extraction, which greatly improves the selectivity and sensitivity of the system. The method can be used to determine trace amounts of gold in ore samples successfully with satisfactory results.  相似文献   

4.
In the 0.1 mol · L?1 hydrochloric acid solution, oxymatrine reacted with tungstosilicic acid to form a 2:1 ion-association complexes. This results in a great enhancement of resonance Rayleigh scattering. The maximum resonance Rayleigh scattering wavelength was located at 393 nm. Resonance Rayleigh scattering intensity was proportional to the concentration of oxymatrine in the range of 1.5–26.4 µg · mL?1, and the detection limit (3σ) was 0.23 µg · mL?1. The optimum conditions and the effects of coexisting substances on the reaction were investigated. The method shows a wide linear range and high sensitivity, and was applied to the determination of oxymatrine in marine capsules and human urine samples with satisfactory results. Therefore, a highly sensitive, simple, and quick method has been developed for the determination of oxymatrine.  相似文献   

5.
Abstract

A new flow‐injection online reduction electrochemical hydride generation system for the determination of Se(IV) and Se(VI) by atomic fluorescence spectrometry (AFS) was developed. In the system, an electromagnetic induction oven was used as heating resource to reduce Se(VI) to Se(IV) and a homemade tubular electrolytic cell as hydride generator. All analytical procedures were automatically controlled by a computer. The conditions of online reduction, including temperature, HCl concentration, and reduction time, have been studied in detail. The detection limits (3σ) of Se(IV) and Se(VI) in aqueous solution were 0.26 µg L?1 and 0.23 µg L?1, respectively. The precision for 11 replicate measurements of 50 µg L?1 Se(IV) and Se(VI) was 2.2% and 2.5%. This proposed method has been applied to the determination of Se(IV) and Se(VI) in springwater samples.  相似文献   

6.
Two new zinc complexes, namely Zn(L1)ClCH2NO(1) and {Zn(L2)CH2NO}n?N(CH3)3?ClO4(2) (L1 = 3,5-di(1H-imidazol-1-yl)pyridine L2 = 1,3,5-tris(1-imidazolyl) benzene), have been synthesized, and characterized by IR spectra, elemental analysis, and a single crystal X-ray diffraction. Fluorescence spectroscopy indicated that two complexes presented strong DNA binding affinity constants to fish sperm DNA (FS-DNA). Gel electrophoresis assay demonstrated the ability of the complex to cleave the HL-60 DNA. Apoptotic study showed the complex exhibited significant cancer cell(KB) inhibitory rate.  相似文献   

7.
Thiol-functionalized MCM-41 mesoporous silicas were synthesized via evaporation-induced self-assembly. The mesoporous silicas obtained were characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption analysis, Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The products were used as adsorbents to remove heavy metal ions from water. The mesoporous silicas (adsorbent A) with high pore diameter (centered at 5.27 nm) exhibited the largest adsorption capacity, with a BET surface area of 421.9 m2 g?1 and pore volume of 0.556 cmg?1. Different anions influenced the adsorption of Cu(II) in the order NO3 ? < OAc? < SO4 2? < CO3 2? < Cit? < Cl?. Analysis of adsorption isotherms showed that Cu2+, Pb2+, Ag+, and Cr3+ adsorption fit the Redlich–Peterson nonlinear model. The mesoporous silicas synthesized in the work can be used as adsorbents to remove heavy metal ions from water effectively. The removal rate was high, and the adsorbent could be regenerated by acid treatment without changing its properties.  相似文献   

8.
The potential for using hydroxyl radical (OH?) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H2O2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80–100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H2O2 by NP surface generated OH? were investigated. Depending on the ratio of iron and H2O2, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.  相似文献   

9.
An orthogonal test design was applied to confirm the optimum condition for H2TiO3–lithium adsorbent preparation and Li+ adsorption. Extraction and adsorption mechanism and cycle performance were studied. The verified optimal condition is confirmed as the Li+ concentration, adsorption temperature, molar ratio of Li/Ti, reaction, and pre-calcination temperature are 4.0 g L?1, 60 °C, 2.2, and 650 and 25 °C, respectively. Under the optimal condition, the adsorptive capacity reaches 57.8 mg g?1. Adsorptive capacity of the adsorbent maintains in 5 cycles, typically 25–30 mg g?1.  相似文献   

10.
Pure LiMn2O4 samples with high crystallinity (LMO-1# and LMO-2#) were successfully synthesized by a facile hydrothermal method using δ-MnO2 nanoflowers and α-MnO2 nanowires as the precursors. The as-prepared samples were analyzed by XRD, SEM, and Brunauer-Emmett-Teller (BET), and their capacitive properties were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge test. Two LiMn2O4 samples showed good capacitive behavior in aqueous hybrid supercapacitors. AC//LMO-1# and AC//LMO-2# delivered the initial specific capacitance of 45.4 and 40.7 F g?1 in 1 M Li2SO4 electrolyte at a current density of 200 mA g?1 in the potential range of 0~1.5 V, respectively. After 1000 cycles, the capacitance retention was 97.6% for AC//LMO-1# and 93.7% for AC//LMO-2#. Obviously, LMO-1# from δ-MnO2 nanoflowers exhibited higher specific capacitance and better cycling performance than LMO-2#, so LMO-1# was more suitable as the positive electrode material in hybrid supercapacitors.  相似文献   

11.
《光谱学快报》2013,46(1-2):133-149
A simple, batch mode, solid phase spectrofluorimetric procedure has been developed for the determination of pyridoxine hydrochloride (PY) (vitamin B6). The method is based on the measurement of the native fluorescence of the analyte at 395 nm (λexc = 295 nm) sorbed on Sephadex SP C‐25 beads. The cation‐exchange gel, previously equilibrated with the sample solution, is packed in a 1‐mm quartz cell in which the measurements are performed (diffuse transmitted fluorescence).

The method responds linearly in the measuring range of 50–500, 10–100 and 5–40 μg·l? 1 with detection limits of 9.5, 2.3 and 0.60 μg·l? 1 for 10, 25 and 50 ml of sample volume, respectively.

The relative standard deviation (n = 10) for the determination of 100 (10 ml), 60 (25 ml) and 30 μg·l? 1 (25 ml) of PY is 1.3%, 2.2% and 3.7%, respectively. The method, which shows increasing sensitivity as the sample volume increases, was satisfactorily applied to the determination of vitamin B6 in pharmaceutical preparations using the procedure for 10 ml of sample.  相似文献   

12.
We report the facile, one-step acetonitrile-mediated synthesis and self-assembly of β-AgVO3 nanowires into three-dimensional (3D) porous spongy-like hydrogel (~ 4 cm diameter) as cathode material for lithium ion battery of high performance and long-term stability. 3D structures made with superlong, very thin, and monoclinic β-AgVO3 nanowires exhibit high specific discharge capacities of 165 mAh g?1 in the first cycle and 100 mAh g?1 at the 50th cycle, with a cyclic capacity retention of 53% at a current density of 50 mA g?1. 3D structures are synthesized by reaction between ammonium vanadate and silver nitrate solution containing 5 mL of acetonitrile followed by a hydrothermal treatment at 200 °C for 12 h. Acetonitrile (used here for the first time in the silver vanadate synthesis) plays an important role in the self-assembly of the silver vanadate nanowires. A tentative growth mechanism for the 3D structure and lithium ions intercalation into β-AgVO3 nanowires has been discussed and described.  相似文献   

13.
Jing Ma  Yafei Liu  Zhonghua Hu  Zijie Xu 《Ionics》2013,19(10):1405-1413
Polyaniline (PANI) electrode materials doped with sulfuric acid (H2SO4) were prepared by cyclic voltammetry (CV) method in different reaction conditions. The structure and morphology of PANI samples were characterized by Fourier transform infrared spectroscopy and scanning electron microscope. The electrochemical properties of PANI samples were studied by CV, galvanostatic charge/discharge, and electrochemical impedance spectroscopy tests. Additionally, the effects of reaction conditions including aniline concentration, voltammetry scan rate, and deposition time on the morphology and properties of PANI samples were investigated in detail. The results showed that the PANI synthesized under the optimal conditions of 0.2 mol?L?1 aniline, scan rate 20 mV?s?1, and deposition time 50 min is in the form of nanorods with a cross-linked network structure. It exhibits an outstanding capacitive performance with good cycle stability and high rate performance. Besides, the specific capacitance of PANI is as high as 757 F?g?1.  相似文献   

14.
Sulan Liao 《光谱学快报》2013,46(5):473-485
Abstract

A new flow‐injection chemiluminescence (CL) method is described for the determination of carbendazim. The method is based on the CL reaction of luminol and hydrogen peroxide (H2O2). Carbendazim can greatly enhance the chemiluminescence intensity in sodium hydroxide–sodium dihydrogen phosphate (NaOH–NaH2PO4) medium (pH=12.6). Under the optimum conditions, the linear range for the determination of carbendazim is 2.00×10?8 to 2.00×10?6 g mL?1 with a detection limit (S/N=3) of 7.24×10?9 g mL?1. The relative standard deviation is 1.8% for 1.0×10?7 g mL?1 carbendazim (n=8). The proposed method has been applied to the determination of carbendazim in tap‐water samples. Furthermore, the possible enhanced CL mechanism is discussed by examining the CL spectra and fluorescence spectra.  相似文献   

15.
ABSTRACT

Surface-enhanced Raman spectroscopy spectra of dimethoate and phosmet pesticides were recorded using a Klarite substrate. Significant enhancements were achieved with dimethoate over a concentration range of 0.5–10 µg mL?1 and phosmet over a concentration range of 0.1–10 µg mL?1. The best prediction model for dimethoate pesticide was achieved with a correlation coefficient of 0.940 and a root mean square error of prediction of 0.864 µg mL?1, with the first derivative and standard normalized variate data preprocessing, and the best prediction model of phosmet pesticide was achieved with a correlation coefficient of 0.949 and a root mean square error of prediction of 0.741 µg mL?1 with the first derivative data preprocessing. Our study shows that pesticides, including dimethoate and phosmet, could be quantitatively measured at as low as 0.5 µg mL?1 level using surface-enhanced Raman technology coupled with a Klarite substrate and the results indicated that surface-enhanced Raman spectroscopy with a Klarite substrate has potential for the analysis of dimethoate and phosmet residues.  相似文献   

16.
Ersin Demir  Recai İnam 《Ionics》2016,22(2):269-276
The voltammeric behavior of bupirimate fungicide has been studied by square wave stripping voltammetry (SWSV). The insoluble R–HgS salt (where R is the bupirimate frame excluding sulfur) formed on the static hanging mercury drop electrode (SHMDE) was electrochemically reduced by giving a fairly well defined cathodic peak within the pH range of 1.0 to 8.0. The peak potentials (E p) were shifted toward more negative values with increasing pH, and a maximum peak response appeared at ?1320 mV (vs. Ag/AgCl) at a pH 6.0. The calibration plot was a straight line in the range of 0.013 to 9.43 mg L?1. The detection limit at pH 6.0 was measured as 4.0 μg L?1 under the conditions of E acc?=??700 mV and t acc?=?10 s. The validity of the recommended method was assessed from the recoveries of spiked tap water, natural peach juice, and commercial peach juice.  相似文献   

17.
Using a theoretical model and mass isotopic balance, biogas (methane and CO2) released from buried products at their microbial degradation was analysed in the landfill of municipal and non-toxic industrial solid organic waste near Kaluga city, Russia. The landfill contains about 1.34×106 tons of waste buried using a ‘sandwich technique’ (successive application of sand–clay and waste layers). The δ13C values of biogenic methane with respect to CO2 were?56.8 (±2.5) ‰, whereas the δ13C of CO2 peaked at+9.12‰ (+1.4±2.3‰ on average), reflecting a virtual fractionation of carbon isotopes in the course of bacterial CO2 reduction at the landfill body. After passing through the aerated soil layers, methane was partially oxidised and characterised by δ13C in the range of?50.6 to?38.2‰, evidencing enrichment in 13C, while the released carbon dioxide had δ13C of?23.3 to?4.04‰, respectively. On the mass isotopic balance for the δ13C values, the methane production in the landfill anaerobic zone and the methane emitted through the aerated landfill surface to the atmosphere, the portion of methane oxidised by methanotrophic bacteria was calculated to be from 10 to 40% (averaged about 25%). According to the theoretical estimation and field measurements, the annual rate of methane production in the landfill reached about 2.9(±1.4)×109 g C CH4 yr?1 or 5.3(±2.6)×106 m3 CH4 yr?1. The average rates of methane production in the landfill and methane emission from landfill to the atmosphere are estimated as about 53 (±26) g C CH4 m?2 d?1 (or 4 (±2) mol CH4 m?2 d?1) and 33 (±12) g C CH4 m?2 d?1 (or 2.7 (±1) mol CH4 m?2 d?1), respectively. The calculated part of methane consumed by methanotrophic bacteria in the aerated part of the landfill was 13(±7) g C CH4 m?2 d?1 (or 1.1(±0.6) mol CH4 m?2 d?1) on average.  相似文献   

18.
Nano-Li2FeSiO4/C composites were prepared from three kinds of nano-SiO2 (their particle sizes are 15?±?5, 30?±?5, and 50?±?5 nm, respectively) by a traditional solid-state reaction method. The as-prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), elementary analyzer, Brunauer–Emmett–Teller (BET) analysis, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy. XRD results reveal that nano-Li2FeSiO4 composites fabricated from nano-SiO2 (smaller than 30 nm) have less impurity. SEM results indicate that the particle size of nano-Li2FeSiO4 composites is nearly accord with the particle size of nano-SiO2. BET analysis indicates that the specific surface areas of LFS15, LFS30, and LFS50 are 35.10, 35.27, and 26.68 m2 g, respectively, and the main pore size distribution of LFS15, LFS30, and LFS50 are 1.5, 5.5, and 10 nm, respectively. Electrochemical measurements indicate that nano-Li2FeSiO4 composites prepared from nano-SiO2 of 30?±?5 nm have the best electrochemical performance among the three samples.  相似文献   

19.
Dan Zhou  Li-Zhen Fan 《Ionics》2018,24(10):3065-3073
Novel three-dimensional porous carbon network (3D-PC) anode was developed by a facile in situ NaCl-template method utilizing citric acid as carbon source. The synthesis process involves the dissolution of NaCl and citric acid in deionized water, citric acid coated on NaCl template during freeze-drying process, carbonization of the composites, and removal of the template with water. The resultant 3D-PC presents high electrical conductivity, large specific surface area, sufficient active sites, large interlayer distance, and high mechanical flexibility, which are contributed to the efficient Na-storage. Therefore, the 3D-PC anode displays enhanced rate performance of 101 mAh g?1 at 1000 mA g?1 and extremely long cycle life of 138 mAh g?1 after 2000 cycles at 200 mA g?1. The unique synthesis strategy coupled with the excellent Na-storage performance ensures 3D-PC a promising anode material for low-cost sodium-ion batteries.  相似文献   

20.
Abstract

The effects of three systems on the chemiluminescence (CL) intensity have been studied in this paper, such as leucogen–potassium permanganate–rhodamine B, leucogen–cerium (IV)–rhodamine B, and leucogen–luminol–hydrogen peroxide (called system 1, system 2, and system 3, respectively). The mechanism of these reactions is also discussed. Surfactant (CTMAB) has a remarkably sensitive effect on these systems mentioned above. Therefore, three new flow injection chemiluminescence methods for the determination of leucogen have been established. For system 1, the linear range is 8.0×10?8 to 4.0×10?5 g mL?1, with limits of detection 2×10?8 g mL?1; the relative standard deviation is 2.5% (n=11, Cs=4.0×10?6 g mL?1). For system 2, the linear range is 1.0×10?8 to 5.0×10?6 g mL?1, with limits of detection 3×10?9 g mL?1; the relative standard deviation is 5.1% (n=11, Cs=1.0×10?6 g mL?1). For system 3, the linear range is 4.0×10?8 to 2.0×10?6 g mL?1, with limits of detection 1×10?8 g mL?1; the relative standard deviation is 1.3% (n=11, Cs=1.0×10?7 g mL?1). Compared with the three methods above, system 3 is confirmed as the best method. This method has been applied to the determination of leucogen with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号