首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A pure Mendelsohn triple system of order v, denoted by PMTS(v), is a pair \((X,\mathcal {B})\) where X is a v-set and \(\mathcal {B}\) is a collection of cyclic triples on X such that every ordered pair of X belongs to exactly one triple of \(\mathcal {B}\) and if \(\langle a,b,c\rangle \in \mathcal {B}\) implies \(\langle c,b,a\rangle \notin \mathcal {B}\). An overlarge set of PMTS(v), denoted by OLPMTS(v), is a collection \(\{(Y{\setminus }\{y_i\},{\mathcal {A}}_i)\}_i\), where Y is a \((v+1)\)-set, \(y_i\in Y\), each \((Y{\setminus }\{y_i\},{\mathcal {A}}_i)\) is a PMTS(v) and these \({\mathcal {A}}_i\)s form a partition of all cyclic triples on Y. It is shown in [3] that there exists an OLPMTS(v) for \(v\equiv 1,3\) (mod 6), \(v>3\), or \(v \equiv 0,4\) (mod 12). In this paper, we shall discuss the existence problem of OLPMTS(v)s for \(v\equiv 6,10\) (mod 12) and get the following conclusion: there exists an OLPMTS(v) if and only if \(v\equiv 0,1\) (mod 3), \(v>3\) and \(v\ne 6\).  相似文献   

2.
Assign to each vertex v of the complete graph \(K_n\) on n vertices a list L(v) of colors by choosing each list independently and uniformly at random from all f(n)-subsets of a color set \([n] = \{1,\dots , n\}\), where f(n) is some integer-valued function of n. Such a list assignment L is called a random (f(n), [n])-list assignment. In this paper, we determine the asymptotic probability (as \(n \rightarrow \infty \)) of the existence of a proper coloring \(\varphi \) of \(K_n\), such that \(\varphi (v) \in L(v)\) for every vertex v of \(K_n\). We show that this property exhibits a sharp threshold at \(f(n) = \log n\). Additionally, we consider the corresponding problem for the line graph of a complete bipartite graph \(K_{m,n}\) with parts of size m and n, respectively. We show that if \(m = o(\sqrt{n})\), \(f(n) \ge 2 \log n\), and L is a random (f(n), [n])-list assignment for the line graph of \(K_{m,n}\), then with probability tending to 1, as \(n \rightarrow \infty \), there is a proper coloring of the line graph of \(K_{m,n}\) with colors from the lists.  相似文献   

3.
The eccentric connectivity index \(\xi ^c(G)\) of a connected graph G is defined as \(\xi ^c(G) =\sum _{v \in V(G)}{deg(v) e(v)},\) where deg(v) is the degree of vertex v and e(v) is the eccentricity of v. The eccentric graph, \(G_e\), of a graph G has the same set of vertices as G,  with two vertices uv adjacent in \(G_e\) if and only if either u is an eccentric vertex of v or v is an eccentric vertex of u. In this paper, we obtain a formula for the eccentric connectivity index of the eccentric graph of a regular dendrimer. We also derive a formula for the eccentric connectivity index for the second iteration of eccentric graph of regular dendrimer.  相似文献   

4.
The optimal channel assignment is an important optimization problem with applications in optical networks. This problem was formulated to the L(p, 1)-labeling of graphs by Griggs and Yeh (SIAM J Discrete Math 5:586–595, 1992). A k-L(p, 1)-labeling of a graph G is a function \(f:V(G)\rightarrow \{0,1,2,\ldots ,k\}\) such that \(|f(u)-f(v)|\ge p\) if \(d(u,v)=1\) and \(|f(u)-f(v)|\ge 1\) if \(d(u,v)=2\), where d(uv) is the distance between the two vertices u and v in the graph. Denote \(\lambda _{p,1}^l(G)= \min \{k \mid G\) has a list k-L(p, 1)-labeling\(\}\). In this paper we show upper bounds \(\lambda _{1,1}^l(G)\le \Delta +9\) and \(\lambda _{2,1}^l(G)\le \max \{\Delta +15,29\}\) for planar graphs G without 4- and 6-cycles, where \(\Delta \) is the maximum vertex degree of G. Our proofs are constructive, which can be turned to a labeling (channel assignment) method to reach the upper bounds.  相似文献   

5.
A covering array \(\text{ CA }(N;t,k,v)\) is an \(N\times k\) array such that in every \(N\times t\) subarray each possible t-tuple over a v-set appears as a row of the subarray at least once. The integers t and v are respectively the strength and the order of the covering array. Let v be a prime power and let \({\mathbb {F}}_v\) denote the finite field with v elements. In this work the original concept of permutation vectors generated by a \((t-1)\)-tuple over \({\mathbb {F}}_v\) is extended to vectors generated by a t-tuple over \({\mathbb {F}}_v\). We call these last vectors extended permutation vectors (EPVs). For every prime power v, a covering perfect hash family \(\text{ CPHF }(2;v^2-v+3,v^3,3)\) is constructed from EPVs given by subintervals of a linear feedback shift register sequence over \({\mathbb {F}}_v\). When \(v\in \{7,9,11,13,16,17,19,23,25\}\) the covering array \(\text{ CA }(2v^3-v;3,v^2-v+3,v)\) generated by \(\text{ CPHF }(2;v^2-v+3,v^3,3)\) has less rows than the best-known covering array with strength three, \(v^2-v+3\) columns, and order v. CPHFs formed by EPVs are also constructed using simulated annealing; in this case the results improve the size of eighteen covering arrays of strength three.  相似文献   

6.
We prove the non-emptiness and irreducibility of \(M_H(v,L)\), the moduli space of Gieseker semistable sheaves on an unnodal Enriques surface Y with primitive Mukai vector v of positive rank and determinant L with respect to a generic polarization H. This completes the chain of progress initiated by Kim (Nagoya Math J 150:85–94, 1998). We also show that the stable locus \(M^s_H(v)\ne \varnothing \) for non-primitive v with \(v^2>0\).  相似文献   

7.
Let \(k\ge 1\) and \(n_1,\ldots ,n_k\ge 1\) be some integers. Let \(S(n_1,\ldots ,n_k)\) be a tree T such that T has a vertex v of degree k and \(T{\setminus } v\) is the disjoint union of the paths \(P_{n_1},\ldots ,P_{n_k}\), that is \(T{\setminus } v\cong P_{n_1}\cup \cdots \cup P_{n_k}\) so that every neighbor of v in T has degree one or two. The tree \(S(n_1,\ldots ,n_k)\) is called starlike tree, a tree with exactly one vertex of degree greater than two, if \(k\ge 3\). In this paper we obtain the eigenvalues of starlike trees. We find some bounds for the largest eigenvalue (for the spectral radius) of starlike trees. In particular we prove that if \(k\ge 4\) and \(n_1,\ldots ,n_k\ge 2\), then \(\frac{k-1}{\sqrt{k-2}}<\lambda _1(S(n_1,\ldots ,n_k))<\frac{k}{\sqrt{k-1}}\), where \(\lambda _1(T)\) is the largest eigenvalue of T. Finally we characterize all starlike trees that all of whose eigenvalues are in the interval \((-2,2)\).  相似文献   

8.
Chaudhry et al. (J Stat Plann Inference 106:303–327, 2002) have examined the existence of BRD(v, 5, λ)s for \({\lambda \in \{4, 10, 20\}}\). In addition, Ge et al. (J Combin Math Combin Comput 46:3–45, 2003) have investigated the existence of \({{\rm GBRD}(v,4,\lambda; \mathbb{G}){\rm s}}\) when \({\mathbb{G}}\) is a direct product of cyclic groups of prime orders. For the first problem, necessary existence conditions are (i) v ≥ 5, (ii) λ(v ? 1) ≡ 0 (mod4), (iii) λ v(v ? 1) ≡ 0 (mod 40), (iv) λ ≡ 0 (mod 2). We show these are sufficient, except for \({v=5, \lambda \in \{4,10\}}\). For the second problem, we improve the known existence results. Five necessary existence conditions are (i) v ≥ 4, (ii) \({\lambda \equiv 0\;({\rm mod}\,|\mathbb{G}|)}\), (iii) λ(v ? 1) ≡ 0 (mod 3), (iv) λ v(v ? 1) ≡ 0 (mod 4), (v) if v = 4 and \({|\mathbb{G}| \equiv 2\;({\rm mod}\,4)}\) then λ ≡ 0 (mod 4). We show these conditions are sufficient, except for \({\lambda = |\mathbb{G}|, (v,|\mathbb{G}|) \in \{(4,3), (10,2), (5,6), (7,4)\}}\) and possibly for \({\lambda = |\mathbb{G}|, (v,|\mathbb{G}|) \in \{(10,2h), (5,6h), (7,4h)\}}\) with h ≡ 1 or 5 (mod 6), h > 1.  相似文献   

9.
Let M be a cohomogeneity one manifold of a compact semisimple Lie group G with one singular orbit \(S_0 = G/H\). Then M is G-diffeomorphic to the total space \(G \times _H V\) of the homogeneous vector bundle over \(S_0\) defined by a sphere transitive representation of G in a vector space V. We describe all such manifolds M which admit an invariant Kähler structure of standard type. This means that the restriction \(\mu : S = Gx = G/L \rightarrow F = G/K \) of the moment map of M to a regular orbit \(S=G/L\) is a holomorphic map of S with the induced CR structure onto a flag manifold \(F = G/K\), where \(K = N_G(L)\), endowed with an invariant complex structure \(J^F\). We describe all such standard Kähler cohomogeneity one manifolds in terms of the painted Dynkin diagram associated with \((F = G/K,J^F)\) and a parameterized interval in some T-Weyl chamber. We determine which of these manifolds admit invariant Kähler–Einstein metrics.  相似文献   

10.
We characterize the extremal structures for mixing walks on trees that start from the most advantageous vertex. Let \(G=(V,E)\) be a tree with stationary distribution \(\pi \). For a vertex \(v \in V\), let \(H(v,\pi )\) denote the expected length of an optimal stopping rule from v to \(\pi \). The best mixing time for G is \(\min _{v \in V} H(v,\pi )\). We show that among all trees with \(|V|=n\), the best mixing time is minimized uniquely by the star. For even n, the best mixing time is maximized by the uniquely path. Surprising, for odd n, the best mixing time is maximized uniquely by a path of length \(n-1\) with a single leaf adjacent to one central vertex.  相似文献   

11.
A decomposition of the blocks of an \(\textsf {STS}(v)\) into partial parallel classes of size m is equivalent to a Kirkman signal set \(\textsf {KSS}(v,m)\). We give decompositions of \(\textsf {STS}(4v-3)\) into classes of size \(v-1\) when \(v \equiv 3 \pmod {6}\), \(v \not = 3\). We also give decompositions of \(\textsf {STS}(v)\) into classes of various sizes when v is a product of two arbitrary integers that are both congruent to \(3 \pmod {6}\). These results produce new families of \(\textsf {KSS}(v,m)\).  相似文献   

12.
In this article, we show the existence of large sets \({\text {LS}}_2[3](2,k,v)\) for infinitely many values of k and v. The exact condition is \(v \ge 8\) and \(0 \le k \le v\) such that for the remainders \(\bar{v}\) and \(\bar{k}\) of v and k modulo 6 we have \(2 \le \bar{v} < \bar{k} \le 5\). The proof is constructive and consists of two parts. First, we give a computer construction for an \({\text {LS}}_2[3](2,4,8)\), which is a partition of the set of all 4-dimensional subspaces of an 8-dimensional vector space over the binary field into three disjoint 2-\((8, 4, 217)_2\) subspace designs. Together with the already known \({\text {LS}}_2[3](2,3,8)\), the application of a recursion method based on a decomposition of the Graßmannian into joins yields a construction for the claimed large sets.  相似文献   

13.
A design is said to be super-simple if the intersection of any two blocks has at most two elements. A super-simple design \({\mathcal{D}}\) with point set X, block set \({\mathcal{B}}\) and index λ is called completely reducible super-simple (CRSS), if its block set \({\mathcal{B}}\) can be written as \({\mathcal{B}=\bigcup_{i=1}^{\lambda} \mathcal{B}_i}\), such that \({\mathcal{B}_i}\) forms the block set of a design with index unity but having the same parameters as \({\mathcal{D}}\) for each 1 ≤ i ≤ λ. It is easy to see, the existence of CRSS designs with index λ implies that of CRSS designs with index i for 1 ≤ i ≤ λ. CRSS designs are closely related to q-ary constant weight codes (CWCs). A (v, 4, q)-CRSS design is just an optimal (v, 6, 4)q+1 code. On the other hand, CRSS group divisible designs (CRSSGDDs) can be used to construct q-ary group divisible codes (GDCs), which have been proved useful in the constructions of q-ary CWCs. In this paper, we mainly investigate the existence of CRSS designs. Three neat results are obtained as follows. Firstly, we determine completely the spectrum for a (v, 4, 3)-CRSS design. As a consequence, a class of new optimal (v, 6, 4)4 codes is obtained. Secondly, we give a general construction for (4, 4)-CRSSGDDs with skew Room frames, and prove that the necessary conditions for the existence of a (4, 2)-CRSSGDD of type g u are also sufficient except definitely for \({(g,u)\in \{(2,4),(3,4),(6,4)\}}\). Finally, we consider the related optimal super-simple (v, 4, 2)-packings and show that such designs exist for all v ≥ 4 except definitely for \({v\in \{4,5,6,9\}}\).  相似文献   

14.
A fundamental result by Gromov and Thurston asserts that, if M is a closed hyperbolic n-manifold, then the simplicial volume \(\Vert M\Vert \) of M is equal to \(\mathrm{Vol}(M)/v_n\), where \(v_n\) is a constant depending only on the dimension of M. The same result also holds for complete finite-volume hyperbolic manifolds without boundary, while Jungreis proved that the ratio \(\mathrm{Vol}(M)/\Vert M\Vert \) is strictly smaller than \(v_n\) if M is compact with nonempty geodesic boundary. We prove here a quantitative version of Jungreis’ result for \(n\ge 4\), which bounds from below the ratio \(\Vert M\Vert /\mathrm{Vol}(M)\) in terms of the ratio \(\mathrm{Vol}(\partial M)/\mathrm{Vol}(M)\). As a consequence, we show that, for \(n\ge 4\), a sequence \(\{M_i\}\) of compact hyperbolic n-manifolds with geodesic boundary satisfies \(\lim _i \mathrm{Vol}(M_i)/\Vert M_i\Vert =v_n\) if and only if \(\lim _i \mathrm{Vol}(\partial M_i)/\mathrm{Vol}(M_i)=0\). We also provide estimates of the simplicial volume of hyperbolic manifolds with geodesic boundary in dimension 3.  相似文献   

15.
For a local maximal function defined on a certain family of cubes lying “well inside” of \(\Omega \), a proper open subset of \({\mathbb {R}}^n\), we characterize the couple of weights (uv) for which it is bounded from \(L^p(v)\) on \(L^q(u)\).  相似文献   

16.
For two given graphs \(G_1\) and \(G_2\), the Ramsey number \(R(G_1,G_2)\) is the least integer r such that for every graph G on r vertices, either G contains a \(G_1\) or \(\overline{G}\) contains a \(G_2\). In this note, we determined the Ramsey number \(R(K_{1,n},W_m)\) for even m with \(n+2\le m\le 2n-2\), where \(W_m\) is the wheel on \(m+1\) vertices, i.e., the graph obtained from a cycle \(C_m\) by adding a vertex v adjacent to all vertices of the \(C_m\).  相似文献   

17.
Let \({\mathbb {F}}_q\) be a finite field with q elements such that \(l^v||(q^t-1)\) and \(\gcd (l,q(q-1))=1\), where lt are primes and v is a positive integer. In this paper, we give all primitive idempotents in a ring \(\mathbb F_q[x]/\langle x^{l^m}-a\rangle \) for \(a\in {\mathbb {F}}_q^*\). Specially for \(t=2\), we give the weight distributions of all irreducible constacyclic codes and their dual codes of length \(l^m\) over \({\mathbb {F}}_q\).  相似文献   

18.
19.
Suppose there exists a Hadamard 2-\((m,\frac{m-1}{2},\frac{m-3}{4})\) design with skew incidence matrix, and a conference graph with v vertices, where \(v = 2m-1\). Under this assumption we prove that there exists a Siamese twin Menon design with parameters \((4m^{2},2m^{2}-m,m^{2}-m)\) intersecting in a balanced incomplete block design \(\mathrm {BIBD}(2m^{2} - m, m^{2} - m, m^{2} - m - 1)\) and a pairwise balanced design \(\mathrm {PBD}(2m^{2} - m, \{m^{2}, m^{2} - m\}, m^{2} - m - 1)\). These Menon designs lead to regular amicable Hadamard matrices of orders not previously constructed. Further we construct complex orthogonal designs of order \(4m^2\) and Butson Hadamard matrices \(\mathrm {BH}(4m^{2},2k)\) for all k. Some results regarding automorphisms of the constructed Menon designs are proven.  相似文献   

20.
We introduce the concept of distance mean-regular graph, which can be seen as a generalization of both vertex-transitive and distance-regular graphs. Let \(\Gamma \) be a graph with vertex set V, diameter D, adjacency matrix \(\varvec{A}\), and adjacency algebra \(\mathcal{A}\). Then, \(\Gamma \) is distance mean-regular when, for a given \(u\in V\), the averages of the intersection numbers \(p_{ij}^h(u,v)=|\Gamma _i(u)\cap \Gamma _j(v)|\) (number of vertices at distance i from u and distance j from v) computed over all vertices v at a given distance \(h\in \{0,1,\ldots ,D\}\) from u, do not depend on u. In this work we study some properties and characterizations of these graphs. For instance, it is shown that a distance mean-regular graph is always distance degree-regular, and we give a condition for the converse to be also true. Some algebraic and spectral properties of distance mean-regular graphs are also investigated. We show that, for distance mean regular-graphs, the role of the distance matrices of distance-regular graphs is played for the so-called distance mean-regular matrices. These matrices are computed from a sequence of orthogonal polynomials evaluated at the adjacency matrix of \(\Gamma \) and, hence, they generate a subalgebra of \(\mathcal{A}\). Some other algebras associated to distance mean-regular graphs are also characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号