首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetic nanoparticles of magnetite Fe3O4 and Fe synthesized by physical vapor deposition with a fast highly effective method using a solar energy have been studied. Targets have been prepared from tablets pressed from Fe3O4 or Fe powders. Relationships between the structure of nanoparticles and their magnetic properties have been investigated in order to understand principles of the control of the parameters of magnetic nanoparticles. Mössbauer investigations have revealed that the nanoparticles synthesized from tablets of both pure iron and Fe3O4 consist of two phases: pure iron and iron oxides (γ-Fe2O3 and Fe3O4). The high iron oxidability suggests that the synthesized nanoparticles have a core/shell structure, where the core is pure iron and the shell is an oxidized iron layer. Magnetite nanoparticles synthesized at a pressure of 80 Torr have the best parameters for hyperthermia due to their core/shell structure and core-to-shell volume ratio.  相似文献   

2.
An aqueous magnetic suspension was prepared by dispersing amphiphilic co-polymer-coated monodispersed magnetite nanoparticles synthesized through thermal decomposition of iron acetylacetonate (Fe(acac)3) in a mixture of oleic acid and oleylamine. The average diameter of narrow-size-distributed magnetite nanoparticles varied between 5 and 12 nm depending on the experimental parameters such as reaction temperature, metal salt concentration and oleic acid/oleylamine ratio. Though the as-synthesized particles were coated with oleate and were dispersible in organic solvent, their surfaces were modified using amphiphilic co-polymers composed of poly(maleic anhydride-alt-1-octadecene) and polyethylene glycol-methyl ether and made dispersible in water. Infrared spectra of the sample indicated the existence of −COOH groups on the surface for further conjugation with biomolecules for targeted cancer therapy.  相似文献   

3.
Nuclear magnetic resonance relaxation properties of aqueous solution containing nanocomposites based on magnetite and maghemite nanoparticles stabilized by arabinogalactan obtained from Baikal larch (Larix sibirica) wood matrix were investigated. The relaxation properties of the solutions, namely, viscosity dependences of T 1 and T 2 and magnetic field dependence of T 1, were studied experimentally. Two models of the nanocomposite granular structure corresponding to two limiting cases of ferromagnetic material distribution over the arabinogalactan matrix were considered. The first one assumes a homogeneous distribution of magnetite and maghemite nanoparticles over the spherical arabinogalactan matrix, while the second one considers a single hard ferromagnetic core at the center of the spherical arabinogalactan matrix. Theoretical fitting of the experimental results within these models was performed.  相似文献   

4.
In this work magnetite (Fe3O4) nanoparticles coated with titanium dioxide (TiO2) were prepared by a novel non-thermal method. In this method, magnetite and pure TiO2 (anatase) nanoparticles were individually prepared by the sol–gel method. After modifying the surface of magnetite nanoparticles by sodium citrate, titanium dioxide was coated on them without using conjunction or heat treatment to obtain Fe3O4:TiO2 core–shell nanoparticles. XRD, EDX, SEM, TEM and VSM were used to investigate the structure, morphology and magnetic properties of the samples. The average crystallite size of the powders was measured by Scherrer's formula. The results obtained from different measurements confirm the formation of Fe3O4:TiO2 core–shell nanoparticles with a decrease in saturation magnetization. Hysteresis loops of the core–shell nanoparticles show no exchange bias effects, which confirms that there is no interaction or interdiffusion at the interface.  相似文献   

5.
Iron oxide nanoparticles of diameter 14 nm were synthesized by applying Pt seed-assisted heterogeneous thermal decomposition of Fe(CO)5 in a two-stage procedure. The intense heating treatment resulted in a remarkable mean volume increment compared to previous studies. This method is able to control the nanoparticle mean diameter, keeping the demand for thermal energy at low levels. High-resolution electron microscopy images and the corresponding electron diffraction patterns revealed the appearance of a FePt3 core in each nanoparticle, surrounded by highly crystallized inverse spinel Fe3O4 formed after atmospheric oxidation, as shown by a combination of X-ray diffraction and chemical analysis. Magnetic measurements indicated that the presence of Pt-rich core does not cause any visible modification to the values of saturation magnetization and anisotropy constant of nanoparticles, compared to homogeneously nucleated iron oxide particles of the same size.  相似文献   

6.
In this paper, we reported a method to prepare monodisperse magnetite nanoparticles at mild temperature using cheap and non-toxic precursors. It overcomes the shortages of chemical co-precipitation method and thermal decomposition method and combines the advantages of facile, cheap, large-scale, monodisperse, nanosize, and low synthesis temperature and low toxic. In this method, FeCl3 · 6H2O, FeCl2 · 4H2O and sodium oleate were mixed in toluene/ethanol/water mixture solvent and refluxed at 74 °C to prepare magnetite nanoparticles directly. The nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer and thermogravimetric analysis. The magnetic properties of nanoparticles were measured by superconducting quantum interference device. The results showed that the nanoparticles are well-monodisperse with about 4–5 nm of average diameter. The nanoparticles were proved to be superparamagnetic with saturated magnetization 23.6 emu/g and blocking temperature 24.4 K. A possible formation mechanism of monodisperse magnetite nanoparticles was presented at the same time.  相似文献   

7.
Magnetite nanocrystals with tunable crystalline structures (orthorhombic and cubic) were synthesized via a simple oxidation-coprecipitation approach basing on the reaction of FeSO4·7H2O with C6H12N4. The average diameter of prepared orthorhombic Fe3O4 nanorods were 15 nm while their lengths were approximately 150~200 nm. As-prepared cubic counterparts were composed of 10 nm sized nanoparticles. XRD, FESEM, TEM, SAED and HRTEM were then used to characterize our samples. In addition, magnetic measurements showed the saturation magnetization of orthorhombic magnetite was lower than that of cubic ones. Mössbauer spectroscopy verified the samples possessed the nature of cubic magnetite. Finally, a possible growth mechanism for orthorhombic nanorods and cubic nanoparticles was also discussed.  相似文献   

8.
Multifunctional core-shell nanocomposites with a magnetic core and a silica shell doped with lanthanide chelate have been prepared by a simple method. First, citric acid-modified magnetite nanoparticles were synthesized by a chemical coprecipitation method. Then the magnetite nanoparticles were coated with silica shells doped with terbium (Tb3+) complex by a modified Stöber method based on hydrolyzing and condensation of tetraethyl orthosilicate (TEOS) and a silane precursor. These multifunctional nanocomposites are potentially useful in a variety of biological areas such as bio-imaging, bio-labeling and bioassays because they can be simultaneously manipulated with an external magnetic field and exhibit unique phosphorescence properties.  相似文献   

9.
Colloidal solutions of magnetic nanoparticles were studied as a promising magnetic resonance imaging (MRI) contrast agent. The problem of aggregative stability of solutions is considered. Sol-gel synthesis of magnetite colloidal solutions stabilized by silica is described. Transmittance spectra were measured to analyze sedimentation of nanoparticles in magnetite–silica solutions of different compositions and concentrations. It is shown that the synthesized nanoparticles can be used as MRI contrast agents. The surface morphology and particle size of Fe3O4/SiO2 layers were estimated by atomic force mictroscopy (AFM) technique. The mechanism of magnetic-field-induced aggregation of Fe3O4/SiO2 nanoparticles into chain-like and fractal structures is described.  相似文献   

10.
Superparamagnetic and monodispersed aqueous ferrofluids of Zn substituted magnetite nanoparticles (ZnxFe3−xO4, x=0, 0.25, 0.3, 0.37 and 0.4) were synthesized via hydrothermal-reduction route in the presence of citric acid, which is a facile, low energy and environmental friendly method. The synthesized nanoparticles were characterized by X ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and the dynamic light scattering (DLS) method. The results showed that a certain amount of citric acid was required to obtain single phase Zn substituted magnetite nanoparticles. Citric acid acted as a modulator and reducing agent in the formation of spinel structure and controlled nanoparticle size and crystallinity. Mean particle sizes of the prepared nanoparticles were around 10 nm. The results that are obtained from XRD, magnetic and power loss measurements showed that the crystallinity, saturation magnetization (MS) and loss power of the synthesized ferrofluids were all influenced by the substitution of Zn in the structure of magnetite. The Zn substituted magnetite nanoparticles obtained by this route showed a good stability in aqueous medium (pH 7) and hydrodynamic sizes below 100 nm and polydispersity indexes below 0.2. The calculated intrinsic loss power (ILP) for the sample x=0.3 (e.g. 2.36 nH m2/kg) was comparable to ILP of commercial ferrofluids with similar hydrodynamic sizes.  相似文献   

11.
The magnetite nanoparticles were synthesized in an ethanol–water solution under ultrasonic irradiation from a Fe(OH)2 precipitate. XRD, TEM, TG, IR, VSM and UV/vis absorption spectrum were used to characterize the magnetite nanoparticles. It was found that the formation of magnetite was accelerated in ethanol–water solution in the presence of ultrasonic irradiation, whereas, it was limited in ethanol–water solution under mechanical stirring. The monodispersibility of magnetite particles was improved significantly through the sonochemical synthesis in ethanol–water solution. The magnetic properties were improved for the samples synthesized under ultrasonic irradiation. This would be attributed to high Fe2+ concentration in the magnetite cubic structure.  相似文献   

12.
The chitosan-coated magnetic nanoparticles (CS MNPs) were in situ synthesized by cross-linking method. In this method; during the adsorption of cationic chitosan molecules onto the surface of anionic magnetic nanoparticles (MNPs) with electrostatic interactions, tripolyphosphate (TPP) is added for ionic cross-linking of the chitosan molecules with each other. The characterization of synthesized nanoparticles was performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS/ESCA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and vibrating sample magnetometry (VSM) analyses. The XRD and XPS analyses proved that the synthesized iron oxide was magnetite (Fe3O4). The layer of chitosan on the magnetite surface was confirmed by FTIR. TEM results demonstrated a spherical morphology. In the synthesis, at higher NH4OH concentrations, smaller sized nanoparticles were obtained. The average diameters were generally between 2 and 8?nm for CS MNPs in TEM and between 58 and 103?nm in DLS. The average diameters of bare MNPs were found as around 18?nm both in TEM and DLS. TGA results indicated that the chitosan content of CS MNPs were between 15 and 23?% by weight. Bare and CS MNPs were superparamagnetic. These nanoparticles were found non-cytotoxic on cancer cell lines (SiHa, HeLa). The synthesized MNPs have many potential applications in biomedicine including targeted drug delivery, magnetic resonance imaging?(MRI), and magnetic hyperthermia.  相似文献   

13.
Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6–12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50–60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50–60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the outer annulus along with the CH4 in the inverse diffusion flame configuration. When particles were synthesized in the presence of the TTIP additive, larger monodispersed individual particles (50–90 nm) were synthesized as observed by TEM. In this article, we show that iron oxide nanoparticles of varied morphology, composition, and size can be synthesized and controlled by varying flame configuration, flame temperature, and additive loading.  相似文献   

14.
Hydrophobic magnetite nanoparticles with a narrow size distribution were prepared by thermal decomposition of Fe(CO)5 in octyl ether solution of oleic acid and by consecutive aeration. The nanoparticles were converted into magnetite core/silica shell (magnetite@silica) structured particles with hydrophilic and processible aminopropyl groups on their surfaces.  相似文献   

15.
Vladimirov  A.  Korovin  S.  Surkov  A.  Kelm  E.  Pustovoy  V. 《Laser Physics》2011,21(4):830-835
The synthesis of silicon nanoparticles in the reaction of the silane pyrolysis is presented. The reaction of the silane decomposition is performed in a flow reactor in the presence of the cw CO2-laser irradiation. As-prepared Si nanoparticles are studied with the aid of transmission electron microscope, fiber spectrometer, and FTIR spectrometer. Spherical Si nanoparticles with a diameter of about 15 nm are produced. The luminescence of the as-prepared nanoparticles is virtually absent. The nanoparticles are etched in acid vapor and are oxidized to increase the luminescence quantum yield. After the chemical treatment, the mean size of the crystalline core of nanoparticles decreases to 5 nm and the luminescence spectrum exhibits the band peaked at 730 nm.  相似文献   

16.
Fe3O4 nanoparticles were hydrothermally synthesized under continuous microwave irradiation from FeCl3·6H2O and FeSO4·7H2O aqueous solutions, using NH4OH as precipitating reagent and N2H4·H2O as oxidation-resistant reagent. The results of X-ray powder diffraction (XRD), FT–IR spectroscopy and scanning electron microscopy (SEM) measurements showed that the synthesized magnetite (Fe3O4) nanoparticles had an average diameter of 10 nm. The magnetic properties of the Fe3O4 nanoparticles were measured using a vibrating sample magnetometer (VSM), indicating that the nanoparticles possessed high saturation magnetization at room temperature. The Fe3O4 nanoparticles were used to prepare magnetic fluids (MFs) based on water, and the properties of the MFs were characterized by a Gouy magnetic balance, a capillary rheometer and a rotating rheometer, respectively.  相似文献   

17.
A novel magnetic photocatalyst, prepared by grafting polyoxometalates (POM) anions PW12O403− onto Fe3O4 nanoparticles via a layer of Ag, was synthesized and characterized. The coated Ag layer was used as an intermediate bond for anchoring POM anions onto the magnetite cores. Resulting materials have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherm, magnetization, and inductively coupled plasma (ICP). The activity of the photocatalyst was tested by the photocatalytic degradation of Rhodamine B. It was found that, compared to pure POM, the decolorization fraction of Rhodamine B in 2 h operation was 2.8-3.4 times higher by using the POM-based nanocomposite. ICP analysis of the concentration of Fe, W and P in treated water showed that photodissolution was minimal. In addition, as the synthesized composite possesses a magnetite core, it is possible to retrieve the photocatalyst by exerting an external magnetic field, which is easier than the recovery of conventional TiO2 fine particles and homogeneous POM photocatalysts. The exhibited photocatalytic activity and magnetization of the novel photocatalyst provide a promising solution for the degradation of water contaminants and photocatalyst recovery.  相似文献   

18.
Fucan-coated magnetite (Fe3O4) nanoparticles were synthesized by the co-precipitation method and studied by Mössbauer spectroscopy and magnetic measurements. The sizes of the nanoparticles were 8–9 nm. Magnetization measurements and Mössbauer spectroscopy at 300 K revealed superparamagnetic behavior. The magnetic moment of the Fe3O4 is partly screened by the Fucan coating aggregation. When the magnetite nanoparticles are capped with oleic acid or fucan, reduced particle-particle interaction is observed by Mössbauer and TEM studies. The antitumoral activity of the fucan-coated nanoparticles were tested in Sarcoma 180, showing an effective reduction of the tumor size.  相似文献   

19.
We report on the synthesis and characterization of uncoated and gold coated magnetite nanoparticles. Structural characterizations, carried out using X-ray diffraction, confirm the formation of magnetite phase with a mean size of ~7 and ~8 nm for the uncoated and gold covered magnetite nanoparticles, respectively. The value of the gold coated Fe3O4 nanoparticles is consistent with the mean physical size determined from transmission electron microscopy images. Mössbauer spectra at room temperature are consistent with the thermal relaxation of magnetic moments mediated by particle-particle interactions. The 77 K Mössbauer spectra are modeled with four sextets. Those sextets are assigned to the signal of iron ions occupying the tetrahedral and octahedral sites in the core and shell parts of the particle. The room-temperature saturation magnetization value determined for the uncoated Fe3O4 nanoparticles is roughly ~60 emu/g and suggests the occurrence of surface effects such as magnetic disorder or the partial surface oxidation. These surface effects are reduced in the gold-coated Fe3O4 nanoparticles. Zero-field–cooled and field-cooled curves of both samples show irreversibilities which are consistent with a superparamagnetic behavior of interacting nanoparticles.  相似文献   

20.
Magnetic iron oxide nanopowders are synthesized by the laser ablation of a target made of a coarse Fe2O3 powder. The geometric characteristics of the nanopowders and their yield are studied over a wide air pressure range ((1–34) × 104 Pa) in an evaporation chamber. The phase compositions of the nanopowders and the conditions under which their chemical composition is closest to magnetite Fe3O4 are determined. The specific saturation magnetization and the coercive force of some iron oxide nanoparticles are measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号