首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two-photon absorption spectrum for benzene-h6 and -d6 is reported and assigned, leading to the frequency assignment for hitherto unknown vibrations in the electronically excited state. In addition absorption has been measured from hot bands in the ground state. This latter technique has allowed us to make an unequivocal assignment of the vibrational modes responsible for inducing the otherwise forbidden two-photon process. The result is in disagreement with current theory, for this prototype two-photon spectrum in the gas phase.  相似文献   

2.
The present paper deals with the interpretation of the photoelectron spectrum of the Li(3)O(-). After several failed attempts to attribute all of the observed peaks in the experimental spectrum to anionic species, neutral species were considered assuming a sequential two-photon absorption mechanism. We find that only two of the six observed peaks can be attributed to photodetachments and that all other observed features can be assigned to ionizations from the ground and excited states of the neutral. Nuclear distributions other than three lithium atoms surrounding the oxygen are not likely to be stable. The interpretation of the experimental peak located at about 1.2 eV remains challenging. It can either be attributed to the second electron detachment (involving the HOMO -1 orbital) energy from the anion's triplet C(2v) state or to higher excited states (involving HOMO +10, 11, 12... orbitals) of the neutral species. Furthermore, we have examined the influence of vibrational displacements on the location of the observed peaks. We find that this effect is smaller than 0.05 eV and, therefore, must be considered as negligible.  相似文献   

3.
Resonance Raman and resonance hyper-Raman spectra and excitation profiles have been measured for a "push-pull" donor-acceptor substituted conjugated polyene bearing a julolidine donor group and a nitrophenyl acceptor group, in acetone at excitation wavelengths from 485 to 356 nm (two-photon wavelengths for the nonlinear spectra). These wavelengths span the strong visible to near-UV linear absorption spectrum, which appears to involve at least three different electronic transitions. The relative intensities of different vibrational bands vary considerably across the excitation spectrum, with the hyper-Raman spectra showing greater variation than the linear Raman. A previously derived theory of resonance hyper-Raman intensities is modified to include contributions from purely vibrational levels of the ground electronic state as intermediate states in the two-photon absorption process. These contributions are found to have only a slight effect on the hyper-Rayleigh intensities and profiles, but they significantly influence some of the hyper-Raman profiles. The absorption spectrum and the Raman, hyper-Rayleigh, and hyper-Raman excitation profiles are quantitatively simulated under the assumption that three excited electronic states contribute to the one- and two-photon absorption in this region. The transition centered near 400 nm is largely localized on the nitrophenyl group, while the transitions near 475 and 355 nm are more delocalized.  相似文献   

4.
We present a theory of two-photon absorption that addresses the formation of spectral shapes taking the vibrational degrees of freedom into account. The theory is used to rationalize the observed differences between the spectral shapes of one- and two-photon absorption. We find that the main cause of these differences is that the two-step and coherent two-photon spectral bands are different even considering a single final state. Our formalism is applied to the N101 molecule (p-nitro-p'-diphenylamine stilbene), which was recently studied experimentally. Simulations show that the two-step two-photon electrovibrational absorption results in a blue shift of the absorption spectrum in agreement with the measurements.  相似文献   

5.
We studied the vibrational energy relaxation mechanisms of the amide I and amide II modes of N-methylacetamide (NMA) monomers dissolved in bromoform using polarization-resolved femtosecond two-color vibrational spectroscopy. The results show that the excited amide I vibration transfers its excitation energy to the amide II vibration with a time constant of 8.3 ± 1 ps. In addition to this energy exchange process, we observe that the excited amide I and amide II vibrations both relax to a final thermal state. For the amide I mode this latter process dominates the vibrational relaxation of this mode. We find that the vibrational relaxation of the amide I mode depends on frequency which can be well explained from the presence of two subbands with different vibrational lifetimes (~1.1 ps on the low frequency side and ~2.7 ps on the high frequency side) in the amide I absorption spectrum.  相似文献   

6.
Precise two-photon absorption spectra of the green fluorescent protein (GFP) and the mutants sapphire-GFP (T203I) and enhanced GFP (S65T/F64L), as well as a model compound for the chromophore, 4'-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) were measured by multiplex two-photon absorption spectroscopy. The observed TPA bands of the anionic forms of enhanced GFP and HBDI were significantly shifted to the higher energy compared with the lowest-energy bands in one-photon absorption spectra. This result indicated the existence of a hidden electronic excited state in the vicinity of the lowest excited singlet (S1) state of the anionic form of the GFP chromophore, which is the origin of the blue shift of the two-photon absorption spectra as well as two-photon fluorescence excitation spectra.  相似文献   

7.
The excited-state symmetry and molecular reorientation of perylene, 1,7-diazaperylene, and 2,5,8,11-tetra- tert-butylperylene have been studied by different fluorescence depolarization experiments. The first excited electronic singlet state was reached through one-photon excitation (OPE) and two-photon excitation (TPE). A 400 and 800 nm femtosecond laser pulse was used for this purpose, and data were collected by means of the time-correlated single-photon counting technique. It is found that the rotational correlation times for each perylene derivative are very similar in the OPE and TPE depolarization experiments. For the determination of the two-photon absorption tensor, a recently described theoretical model has been applied (Ryderfors et al. J. Phys. Chem. A 2007, 111, 11531). It was found that the two-photon process can be described by a 2 x 2 absorption tensor for which the components are solvent dependent and exhibit mixed vibronic character. In the dipole approximation this is compatible with a parity-forbidden two-photon absorption into the first excited singlet state.  相似文献   

8.
The energy dissipation mechanism from photoexcited azobenzene (Az) was studied by femtosecond time-resolved UV absorption spectroscopy using 7-amino-4-trifluoromethylcoumarin (ATC) as a probe. The distance between the probe molecule and Az was fixed by covalently linking them together through a rigid proline spacer. Picosecond dynamics in THF solutions were studied upon excitation into the S1 state by a 100 fs laser pulse at 480 nm. Transient absorption spectra obtained for Az-Pro-ATC combined the S1 state absorption and vibrationally excited ground-state absorption of ATC. Correction of the transient spectrum of Az-Pro-ATC for the S1 absorption provided the time-resolved absorption spectrum of the ATC hot band. Three major components were observed in the transient kinetics of Az-Pro-ATC vibrational cooling. It is proposed that in ca. 0.25 ps after the excitation, the S1 state of azobenzene decays to form an initial vibrationally excited nonthermalized ground state of Az-Pro-ATC that involves vibrational modes of both azobenzene and coumarin. This hot ground state decays in ca. 0.32 ps to the next, vibrationally equilibrated, transient state by redistributing the energy within the molecule. Subsequently, the latter state cools by transferring its energy to the closest solvent molecules in ca. 5 ps; then, the energy diffuses to the bulk solvent in 13 ps.  相似文献   

9.
To better understand DNA photodamage, several nucleosides were studied by femtosecond transient absorption spectroscopy. A 263-nm, 150-fs ultraviolet pump pulse excited each nucleoside in aqueous solution, and the subsequent dynamics were followed by transient absorption of a femtosecond continuum pulse at wavelengths between 270 and 700 nm. A transient absorption band with maximum amplitude near 600 nm was detected in protonated guanosine at pH 2. This band decayed in 191 +/- 4 ps in excellent agreement with the known fluorescence lifetime, indicating that it arises from absorption by the lowest excited singlet state. Excited state absorption for guanosine and the other nucleosides at pH 7 was observed in the same spectral region, but decayed on a subpicosecond time scale by internal conversion to the electronic ground state. The cross section for excited state absorption is very weak for all nucleosides studied, making some amount of two-photon ionization of the solvent unavoidable. The excited state lifetimes of Ado, Guo, Cyd, and Thd were determined to be 290, 460, 720, and 540 fs, respectively (uncertainties are +/-40 fs). The decay times are shorter for the purines than for the pyrimidine bases, consistent with their lower propensity for photochemical damage. Following internal conversion, vibrationally highly excited ground state molecules were detected in experiments on Ado and Cyd by hot ground state absorption at ultraviolet wavelengths. The decays are assigned to intermolecular vibrational energy transfer to the solvent. The longest time constant observed for Ado is approximately 2 ps, and we propose that solute-solvent H-bonds are responsible for this fast rate of vibrational cooling. The results show for the first time that excited singlet state dynamics of the DNA bases can be directly studied at room temperature. Like sunscreens that function by light absorption, the bases rapidly convert dangerous electronic energy into heat, and this property is likely to have played a critical role in life's early evolution on earth.  相似文献   

10.
Photochromophores such as cis-stilbene (1a), metacyclophenadiene (2a), and the diarylethene 3a undergo photoinduced conrotatory opening and closing of a central bond and are currently being sought out as potential candidates for media within 3D optical information storage devices. Strong molecular two-photon absorption (inducing the reversible photoisomerization) is a necessary feature for this application due to the need for high 3D spatial resolution. Here, the one- and two-photon absorption (OPA and TPA) characteristics of the open- and closed-ring isomers of 1-3 have been investigated using time-dependent density functional theory. It was determined that the excited states populated by two-photon absorption were nearly 1 eV higher in energy than the lowest energy excited state populated by one-photon absorption. The electronic structures of the TPA and OPA accessed states were then compared utilizing natural transition orbital analysis. There, it was found that states excited by OPA had pipi* character about the C-C framework associated with the bond formation/scission of the central C-C bond. In contrast, the states populated by TPA have pipi* character along the C-C skeletal periphery, including phenyl excitations. It is postulated that these differences in excited state electronic structure may lead to reaction pathways alternative to photoisomerization about the central C-C bond, impacting the utility of these compounds as 3D information storage media.  相似文献   

11.
We consider electron injection into the conduction band of a semiconductor, from an electronically excited state of a dye molecule, adsorbed on its surface. For arbitrary width of the conduction band, the survival probability of the excited state can be calculated using a Green's-function approach. We show that the existence of a split-off state can play an important role in the total injection probability. In the wide band limit, the survival probability decays exponentially, but for finite band widths it does not. We further investigate the effect of vibrations on the process. A Green's operator technique may be used to solve this too exactly. We show that the problem may be reduced to a non-Hermitian eigenvalue problem for the vibrational states alone. Exact results can be obtained for arbitrary bandwidth and for a few vibrational degrees of freedom. In the wide band limit, the dynamics is particularly simple and we find that (1) the survival probability of the excited state is unchanged by the inclusion of vibrational motion, but (2) each vibrational state now has a finite lifetime. Numerical results are presented for the effects of reorganization energy, energy of the injecting level, and the variation of the matrix element for the electron injection, on the survival probability of the electron in the excited state. As an illustration of the approach, we also present results of numerical calculation of the absorption spectrum of perylene adsorbed on TiO(2) and compare it with experimental results.  相似文献   

12.
Spectral and phase shaping of femtosecond laser pulses is used to selectively excite vibrational wave packets on the ground (S0) and excited (S1) electronic states in the laser dye LD690. The transient absorption signals observed following excitation near the peak of the ground-state absorption spectrum are characterized by a dominant 586 cm(-1) vibrational mode. This vibration is assigned to a wave packet on the S0 potential energy surface. When the excitation pulse is tuned to the blue wing of the absorption spectrum, a lower frequency 568 cm(-1) vibration dominates the response. This lower frequency mode is assigned to a vibrational wave packet on the S1 electronic state. The spectrum and phase of the excitation pulse also influence both the dephasing of the vibrational wave packet and the amplitude profiles of the oscillations as a function of probe wavelength. Excitation by blue-tuned, positively chirped pulses slows the apparent dephasing of the vibrational coherences compared with a transform-limited pulse having the same spectrum. Blue-tuned negatively chirped excitation pulses suppress the observation of coherent oscillations in the ground state.  相似文献   

13.
Many squaraines have been observed to exhibit two-photon absorption at transition energies close to those of the lowest energy one-photon electronic transitions. Here, the electronic and vibronic contributions to these low-energy two-photon absorptions are elucidated by performing correlated quantum-chemical calculations on model chromophores that differ in their terminal donor groups (diarylaminothienyl, indolenylidenemethyl, dimethylaminopolyenyl, or 4-(dimethylamino)phenylpolyenyl). For squaraines with diarylaminothienyl and dimethylaminopolyenyl donors and for the longer examples of 4-(dimethylamino)phenylpolyenyl donors, the calculated energies of the lowest two-photon active states approach those of the lowest energy one-photon active (1B(u)) states. This is consistent with the existence of purely electronic channels for low-energy two-photon absorption (TPA) in these types of chromophores. On the other hand, for all squaraines containing indolinylidenemethyl donors, the calculations indicate that there are no low-lying electronic states of appropriate symmetry for TPA. Actually, we find that the lowest energy TPA transitions can be explained through coupling of the one-photon absorption (OPA) active 1B(u) state with b(u) vibrational modes. Through implementation of Herzberg-Teller theory, we are able to identify the vibrational modes responsible for the low-energy TPA peak and to reproduce, at least qualitatively, the experimental TPA spectra of several squaraines of this type.  相似文献   

14.
Two modified metallophthalocyanines (MPcs) containing sulfonic naphthoxy substituents were synthesized. The measurements of transient absorption and time-resolved photoluminescence were used to study the ultrafast response and excited state dynamics of two MPcs in dimethyl sulfoxide (DMSO) solution, which were predominantly in the monomeric form. Under excitation at 400 nm, these molecules experience vibrational relaxation to the bottom of the first excited state and then the excitation rapidly converts to the low-lying charge-transfer (CT) state and finally reaches the triplet states. Under excitation at 800 nm, they show a two-photon absorption character, and their excited state dynamics exhibit strong dependence on the probe wavelength. The main results with 400 nm pumping are similar to the results with 800 nm pumping. For p-HPcZn, weak two-photon photoluminescence was also observed with a lifetime of 52 +/- 2 ps. A four-level model was used to illustrate the excited state dynamics of p-HPcZn, while a five-level model was suggested for p-HPcCo molecule.  相似文献   

15.
李小静  李晶  王传奎 《物理化学学报》2009,25(11):2319-2324
在密度泛函理论水平上, 利用响应函数方法研究了实验新合成的两类以芴为π中心的分子(SK-G1和NT-G1)的双光子吸收特性. 计算结果表明, 这两类有机分子都具有较大的单光子和双光子光吸收强度. 在低能量范围内, NT-G1分子的最大单光子吸收峰相对于SK-G1分子来说发生了红移, 且其最大单光子吸收强度是SK-G1分子的两倍. SK-G1和NT-G1分子的最大双光子吸收均发生在第二激发态. NT-G1分子的最大双光子吸收截面约是SK-G1分子的五倍, 并且NT-G1分子存在一个较宽的双光子吸收带. NT-G1分子的较强光学性质与分子内较大的电荷转移过程有关. 采用Onsager模型计算了溶剂分子对溶质分子单光子吸收性质的影响, 理论计算结果和实验测量结果符合得较好.  相似文献   

16.
The single-photon fluorescence (SPF) of IR125 can be enhanced when the laser polarization changes from linear through elliptical to circular [A. Nag and D. Goswami, J. Chem. Phys. 132, 154508 (2010)]. In this paper, we further explain and discuss the physical control mechanism. Our theoretical and experimental results demonstrate that the SPF enhancement can be attributed to the nonresonant two-photon absorption of a higher excited state. We conclude that the SPF intensity involving the nonresonant multiphoton absorption of the higher excited state can be controlled by varying the laser polarization.  相似文献   

17.
The two-photon resonant multiphoton ionization (MPI) spectra of methyl iodide, methyl iodide-d3, ethyl, propyl, and butyl iodide are reported in the 49 000-55 000 cm?1 region. Four separate transitions to excited states labeled Δ, Π, Σ, Π in increasing energy are expected in this range which result from the excitation of an iodine 5pπ electron to the 6s molecular Rydberg orbital. Two-photon spectroscopy with its different selection rules and unique dependence on the laser polarization is shown to significantly advance the understanding of these transitions. In particular, laser polarization studies identify a state which is strongly two-photon allowed but absent in the UV absorption spectrum as the Σ state. Rotational contours indicate a large geometry change takes place in this transition. The two Π states appear strongly in both the one-and two-photon spectrum. Polarization analysis confirms their electronic symmetry assignment in addition to distinguishing vibronic bands arising from nontotally symmetric vibrations. No evidence is found for the Δ state in the multiphoton ionization spectrum, due to either a small two-photon cross section or a low probability of ionization following the initial two-photon transition. Further complications and characteristics of single laser MPI spectroscopy in the study of two-photon absorption in methyl iodide and other fundamental molecules are discussed.  相似文献   

18.
Naphthalene vapor is irradiated by μsec dye laser pulses of 150 kW peak power and a spectral bandwidth of 0.3 nm. A two-photon excitation spectrum is detected by monitoring the near UV fluorescence as a function of laser wavelength which is tuned between 570 and 610 nm. The fluorescence obtained by irradiation into the strongest band of the two-photon spectrum could be spectroscopically resolved using a bandwidth of 80 cm?1. The spectrum exhibits vibrational structure which lies on a strong non-resolved background. From information in both spectra it can be definitely concluded that vibronic levels of B3u × b3u species in the lowest singlet state are predominantly excited in a two-photon process. The non-resolved background in the fluorescence spectrum is attributed to subsequent excitation of the two-photon state by a third photon. Further stepwise excitation in the strong radiation field of the laser is also taken into account.  相似文献   

19.
The (2+1) resonance-enhanced multiphoton ionization (REMPI) spectrum of SF has been obtained in the single-photon wavelength region of 307-321 nm. Five vibronic bands were observed and assigned to the two-photon transitions from the ground state to a 2§ Rydberg state. The term value Te, vibrational frequency, and the rotational constant of the 2§ Rydberg state were determined. Another 2P state was observed near 312 nm.  相似文献   

20.
A hybrid of a time-of-flight mass spectrometer and a time-of-flight "magnetic-bottle type" photoelectron (PE) spectrometer is used for fs pump-probe investigations of the excited state dynamics of thiophene. A resonant two-photon ionization spectrum of the onset of the excited states has been recorded with a tunable UV laser of 190 fs pulse width. With the pump laser set to the first intense transition we find by UV probe ionization first a small time shift of the maxima in the PE spectrum and then a fast decay to a low constant intensity level. The fitted time constants are 80+/-10 fs, and 25+/-10 fs, respectively. Theoretical calculations show that upon geometry relaxation the electronic state order changes and conical intersections between excited states exist. We use the vertical state order S1, S2, S3 to define the terms S1, S2, and S3 for the characterization of the electron configuration of these states. On the basis of our theoretical result we discuss the electronic state order in the UV spectra and identify in the photoelectron spectrum the origin of the first cation excited state D1. The fast excited state dynamics agrees best with a vibrational dynamics in the photo-excited S1 (80+/-10 fs) and an ultrafast decay via a conical intersection, presumably a ring opening to the S3 state (25+/-10 fs). The subsequently observed weak constant signal is taken as an indication, that in the gas phase the ring-closure to S0 is slower than 50 ps. An ultrafast equilibrium between S1 and S2 before ring opening is not supported by our data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号