首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G. The clique-transversal number, denoted by τ c (G), is the minimum cardinality of a clique-transversal set in G. In this paper we give the exact value of the clique-transversal number for the line graph of a complete graph. Also, we give a lower bound on the clique-transversal number for 4-regular claw-free graphs and characterize the extremal graphs achieving the lower bound.  相似文献   

2.
A circular-arc graph is the intersection graph of arcs on a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. A clique-independent set of a graph is a set of pairwise disjoint cliques of the graph. It is NP-hard to compute the maximum cardinality of a clique-independent set for a general graph. In the present paper, we propose polynomial time algorithms for finding the maximum cardinality and weight of a clique-independent set of a -free CA graph. Also, we apply the algorithms to the special case of an HCA graph. The complexity of the proposed algorithm for the cardinality problem in HCA graphs is O(n). This represents an improvement over the existing algorithm by Guruswami and Pandu Rangan, whose complexity is O(n2). These algorithms suppose that an HCA model of the graph is given.  相似文献   

3.
A path cover of a graph G=(V,E) is a family of vertex-disjoint paths that covers all vertices in V. Given a graph G, the path cover problem is to find a path cover of minimum cardinality. This paper presents a simple O(n)-time approximation algorithm for the path cover problem on circular-arc graphs given a set of n arcs with endpoints sorted. The cardinality of the path cover found by the approximation algorithm is at most one more than the optimal one. By using the result, we reduce the path cover problem on circular-arc graphs to the Hamiltonian cycle and Hamiltonian path problems on the same class of graphs in O(n) time. Hence the complexity of the path cover problem on circular-arc graphs is the same as those of the Hamiltonian cycle and Hamiltonian path problems on circular-arc graphs.  相似文献   

4.
A circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model is called a Helly (resp. proper Helly) circular-arc graph. The clique graphK(G) of a graph G is the intersection graph of its cliques. The iterated clique graphKi(G) of G is defined by K0(G)=G and Ki+1(G)=K(Ki(G)). In this paper, we consider two problems on clique graphs of circular-arc graphs. The first is to characterize clique graphs of Helly circular-arc graphs and proper Helly circular-arc graphs. The second is to characterize the graph to which a general circular-arc graph K-converges, if it is K-convergent. We propose complete solutions to both problems, extending the partial results known so far. The methods lead to linear time recognition algorithms, for both problems.  相似文献   

5.
On Clique-Transversals and Clique-Independent Sets   总被引:1,自引:0,他引:1  
A clique-transversal of a graph G is a subset of vertices intersecting all the cliques of G. A clique-independent set is a subset of pairwise disjoint cliques of G. Denote by C (G) and C (G) the cardinalities of the minimum clique-transversal and maximum clique-independent set of G, respectively. Say that G is clique-perfect when C (H)= C (H), for every induced subgraph H of G. In this paper, we prove that every graph not containing a 4-wheel nor a 3-fan as induced subgraphs and such that every odd cycle of length greater than 3 has a short chord is clique-perfect. The proof leads to polynomial time algorithms for finding the parameters C (G) and C (G), for graphs belonging to this class. In addition, we prove that to decide whether or not a given subset of vertices of a graph is a clique-transversal is Co-NP-Complete. The complexity of this problem has been mentioned as unknown in the literature. Finally, we describe a family of highly clique-imperfect graphs, that is, a family of graphs G whose difference C (G)– C (G) is arbitrarily large.  相似文献   

6.
A complete partition of a graph G is a partition of its vertex set in which any two distinct classes are connected by an edge. Let cp(G) denote the maximum number of classes in a complete partition of G. This measure was defined in 1969 by Gupta [19], and is known to be NP-hard to compute for several classes of graphs. We obtain essentially tight lower and upper bounds on the approximability of this problem. We show that there is a randomized polynomial-time algorithm that given a graph G with n vertices, produces a complete partition of size Ω(cp(G)/√lgn). This algorithm can be derandomized. We show that the upper bound is essentially tight: there is a constant C > 1, such that if there is a randomized polynomial-time algorithm that for all large n, when given a graph G with n vertices produces a complete partition into at least C·cp(G)/√lgn classes, then NP ⊆ RTime(n O(lg lg n)). The problem of finding a complete partition of a graph is thus the first natural problem whose approximation threshold has been determined to be of the form Θ((lgn) c ) for some constant c strictly between 0 and 1. The work reported here is a merger of the results reported in [30] and [21].  相似文献   

7.
Let fd (G) denote the minimum number of edges that have to be added to a graph G to transform it into a graph of diameter at most d. We prove that for any graph G with maximum degree D and n > n0 (D) vertices, f2(G) = nD − 1 and f3(G) ≥ nO(D3). For d ≥ 4, fd (G) depends strongly on the actual structure of G, not only on the maximum degree of G. We prove that the maximum of fd (G) over all connected graphs on n vertices is n/⌊d/2 ⌋ − O(1). As a byproduct, we show that for the n‐cycle Cn, fd (Cn) = n/(2⌊d/2 ⌋ − 1) − O(1) for every d and n, improving earlier estimates of Chung and Garey in certain ranges. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 161–172, 2000  相似文献   

8.
We give two new linear-time algorithms, one for recognizing proper circular-arc graphs and the other for recognizing unit circular-arc graphs. Both algorithms provide either a model for the input graph, or a certificate that proves that such a model does not exist and can be authenticated in O(n) time. No other previous algorithm for each of these two graph classes provides a certificate for its result.  相似文献   

9.
We prove that the identity
holds for all directed graphs G and H. Similar bounds for the usual chromatic number seem to be much harder to obtain: It is still not known whether there exists a number n such that χ(G×H) ≥ 4 for all directed graphs G, H with χ(G) ≥ χ(H) ≥ n. In fact, we prove that for every integer n ≥ 4, there exist directed graphs Gn, Hn such that χ(Gn) = n, χ(Hn) = 4 and χ(Gn×Hn) = 3.  相似文献   

10.
We obtain an explicit characterization of the stable points of the action of on the cartesian product G  × n by simultaneous conjugation on each factor in terms of the corresponding invariant functions. From this, a simple criterion for the irreducibility of representations of finitely generated groups into G is derived. We also obtain analogous results for the action of on the vector space of n-tuples of 2 × 2 complex matrices. For a free group F n of rank n, we show how to generically reconstruct the 2 n-2 conjugacy classes of representations F n G from their values under the map considered in Magnus [Math. Zeit. 170, 91–103 (1980)], defined by certain 3n − 3 traces of words of length one and two.   相似文献   

11.
In this paper, we show that the clique-transversal number τC(G) and the clique-independence number αC(G) are equal for any distance-hereditary graph G. As a byproduct of proving that τC(G)=αC(G), we give a linear-time algorithm to find a minimum clique-transversal set and a maximum clique-independent set simultaneously for distance-hereditary graphs.  相似文献   

12.
 Assume that G is a 3-colourable connected graph with e(G) = 2v(G) −k, where k≥ 4. It has been shown that s 3(G) ≥ 2 k −3, where s r (G) = P(G,r)/r! for any positive integer r and P(G, λ) is the chromatic polynomial of G. In this paper, we prove that if G is 2-connected and s 3(G) < 2 k −2, then G contains at most v(G) −k triangles; and the upper bound is attained only if G is a graph obtained by replacing each edge in the k-cycle C k by a 2-tree. By using this result, we settle the problem of determining if W(n, s) is χ-unique, where W(n, s) is the graph obtained from the wheel W n by deleting all but s consecutive spokes. Received: January 29, 1999 Final version received: April 8, 2000  相似文献   

13.
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is not known. Another open question concerning clique-perfect graphs is the complexity of the recognition problem. Recently we were able to characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs when the graph belongs to two different subclasses of claw-free graphs. These characterizations lead to polynomial time recognition of clique-perfect graphs in these classes of graphs. In this paper we solve the characterization problem in two new classes of graphs: diamond-free and Helly circular-arc () graphs. This last characterization leads to a polynomial time recognition algorithm for clique-perfect graphs.  相似文献   

14.
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs.  相似文献   

15.
Some results on R 2-edge-connectivity of even regular graphs   总被引:1,自引:0,他引:1  
Let G be a connected k(≥3)-regular graph with girth g. A set S of the edges in G is called an Rredge-cut if G-S is disconnected and comains neither an isolated vertex nor a one-degree vertex. The R2-edge-connectivity of G, denoted by λ^n(G), is the minimum cardinality over all R2-edge-cuts, which is an important measure for fault-tolerance of computer interconnection networks. In this paper, λ^n(G)=g(2k-2) for any 2k-regular connected graph G (≠K5) that is either edge-transitive or vertex-transitive and g≥5 is given.  相似文献   

16.
An electrical potential U on a bordered Riemann surface X with conductivity function σ>0 satisfies equation d(σ d c U)=0. The problem of effective reconstruction of σ from electrical currents measurements (Dirichlet-to-Neumann mapping) on the boundary: U| bX σ d c U| bX is studied. We extend to the case of Riemann surfaces the reconstruction scheme given, firstly, by R. Novikov (Funkc. Anal. Ego Priloz. 22:11–22, 2008) for simply connected X. We apply for this new kernels for on the affine algebraic Riemann surfaces constructed in Henkin (, 2008).   相似文献   

17.
We study the cover time of a random walk on the largest component of the random graph Gn,p. We determine its value up to a factor 1 + o(1) whenever np = c > 1, c = O(lnn). In particular, we show that the cover time is not monotone for c = Θ(lnn). We also determine the cover time of the k‐cores, k ≥ 2. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

18.
In this note we strengthen the stability theorem of Erd?s and Simonovits. Write Kr(s1, …, sr) for the complete r‐partite graph with classes of sizes s1, …, sr and Tr(n) for the r‐partite Turán graph of order n. Our main result is: For all r≥2 and all sufficiently small c>0, ε>0, every graph G of sufficiently large order n with e(G)>(1?1/r?ε)n2/2 satisfies one of the conditions:
  • (a) G contains a $K_{r+1} (\lfloor c\,\mbox{ln}\,n \rfloor,\ldots,\lfloor c\,\mbox{ln}\,n \rfloor,\lceil n^{{1}-\sqrt{c}}\rceil)In this note we strengthen the stability theorem of Erd?s and Simonovits. Write Kr(s1, …, sr) for the complete r‐partite graph with classes of sizes s1, …, sr and Tr(n) for the r‐partite Turán graph of order n. Our main result is: For all r≥2 and all sufficiently small c>0, ε>0, every graph G of sufficiently large order n with e(G)>(1?1/r?ε)n2/2 satisfies one of the conditions:
    • (a) G contains a $K_{r+1} (\lfloor c\,\mbox{ln}\,n \rfloor,\ldots,\lfloor c\,\mbox{ln}\,n \rfloor,\lceil n^{{1}-\sqrt{c}}\rceil)$;
    • (b) G differs from Tr(n) in fewer than (ε1/3+c1/(3r+3))n2 edges.
    Letting µ(G) be the spectral radius of G, we prove also a spectral stability theorem: For all r≥2 and all sufficiently small c>0, ε>0, every graph G of sufficiently large order n with µ(G)>(1?1/r?ε)n satisfies one of the conditions:
    • (a) G contains a $K_{r+1}(\lfloor c\,\mbox{ln}\,n\rfloor,\ldots,\lfloor c\,\mbox{ln}\,n\rfloor,\lceil n^{1-\sqrt{c}}\rceil)$;
    • (b) G differs from Tr(n) in fewer than (ε1/4+c1/(8r+8))n2 edges.
    © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 362–368, 2009  相似文献   

19.
Let G be an edge weighted graph with n nodes, and let A(3,G) be the average weight of a triangle in G. We show that the number of triangles with weight at most equal to A(3,G) is at least (n−2) and that this bound is sharp for all n≥7. Extensions of this result to cliques of cardinality k>3 are also discussed.  相似文献   

20.
A graph is called a proper refinement of a star graph if it is a refinement of a star graph, but it is neither a star graph nor a complete graph. For a refinement of a star graph G with center c, let G c * be the subgraph of G induced on the vertex set V (G)\ {c or end vertices adjacent to c}. In this paper, we study the isomorphic classification of some finite commutative local rings R by investigating their zero-divisor graphs G = Γ(R), which is a proper refinement of a star graph with exactly one center c. We determine all finite commutative local rings R such that G c * has at least two connected components. We prove that the diameter of the induced graph G c * is two if Z(R)2 ≠ {0}, Z(R)3 = {0} and G c * is connected. We determine the structure of R which has two distinct nonadjacent vertices α, βZ(R)* \ {c} such that the ideal [N(α) ∩ N(β)]∪ {0} is generated by only one element of Z(R)*\{c}. We also completely determine the correspondence between commutative rings and finite complete graphs K n with some end vertices adjacent to a single vertex of K n .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号