首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Auto-ignition of turbulent non-premixed systems is encountered in practical devices such as diesel internal combustion engines. It remains a challenge for modellers, as it exhibits specific features such as unsteadiness, flame propagation and combustion far from stoichiometric conditions. In this paper, a two-dimensional DNS database of an igniting H2/O2/N2 mixing layer, including detailed chemistry and transport, is extensively post-processed in order to gain physical insight into the flame structure and dynamics during auto-ignition. The results are used as a framework for the development of a generalized flame surface density modelling approach by integrating the equations over all possible mixture fraction values. The mean reaction rate is split into two contributions: a generalized flame surface density and a mean reaction rate per unit generalized flame surface density. The unsteadiness of the ignition phenomenon is accounted for via a generalized progress variable. Closures for the generalized surface average of the reaction rate and for the generalized progress variable are proposed, and the modelling approach is tested a priori versus the DNS data. The use of a laminar database for the chemistry coupled to the mean turbulent field via the generalized progress variable shows very promising results, capturing the correct ignition delay and the premixed peak in the turbulent mean heat release rate evolution. This allows confidence in future inclusion and validation of this approach in a RANS-CFD code.  相似文献   

2.
A principal component analysis (PCA) and artificial neural network (ANN) based chemistry tabulation approach is presented. ANNs are used to map the thermochemical state onto a low-dimensional manifold consisting of five control variables that have been identified using PCA. Three canonical configurations are considered to train the PCA-ANN model: a series of homogeneous reactors, a nonpremixed flamelet, and a two-dimensional lifted flame. The performance of the model in predicting the thermochemical manifold of a spatially-developing turbulent jet flame in diesel engine thermochemical conditions is a priori evaluated using direct numerical simulation (DNS) data. The PCA-ANN approach is compared with a conventional tabulation approach (tabulation using ad hoc defined control variables and linear interpolation). The PCA-ANN model provides higher accuracy and requires several orders of magnitude less memory. These observations indicate that the PCA-ANN model is superior for chemistry tabulation, especially for modelling complex chemistries that present multiple combustion modes as observed in diesel combustion. The performance of the PCA-ANN model is then compared to the optimal estimator, i.e. the conditional mean from the DNS. The results indicate that the PCA-ANN model gives high prediction accuracy, comparable to the optimal estimator, especially for major species and the thermophysical properties. Higher errors are observed for the minor species and reaction rate predictions when compared to the optimal estimator. It is shown that the prediction of minor species and reaction rates can be improved by using training data that exhibits a variation of parameters as observed in the turbulent flame. The output of the ANN is analysed to assess mass conservation. It is observed that the ANN incurs a mean absolute error of 0.05% in mass conservation. Furthermore, it is demonstrated that this error can be reduced by modifying the cost function of the ANN to penalise for deviation from mass conservation.  相似文献   

3.
This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Zc correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Zc correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.  相似文献   

4.
Combustion phenomena are of high scientific and technological interest, in particular for energy generation and transportation systems. Direct Numerical Simulations (DNS) have become an essential and well established research tool to investigate the structure of turbulent flames, since they do not rely on any approximate turbulence models. In this work two complementary DNS codes are employed to investigate different types of fuels and flame configurations. The code is π3 is a 3-dimensional DNS code using a low-Mach number approximation. Chemistry is described through a tabulation, using two coordinates to enter a database constructed for example with 29 species and 141 reactions for methane combustion. It is used here to investigate the growth of a turbulent premixed flame in a methane-air mixture (Case 1). The second code,Sider is an explicit three-dimensional DNS code solving the fully compressible reactive Navier-Stokes equations, where the chemical processes are computed using a complete reaction scheme, taking into account accurate diffusion properties. It is used here to compute a hydrogen/air turbulent diffusion flame (Case 2), considering 9 chemical species and 38 chemical reactions.  相似文献   

5.
The reaction progress variable, which is widely used in premixed and diffusion combustion studies, comprises a set of pre-selected intermediate species to denote reaction progress. Progress towards autoignition can also be traced by the Livengood–Wu (LW) integral. Autoignition occurs when the LW integral attains a value of unity. This concept is further explored by applying it to an inhomogeneous mixture scenario, to determine the time and place of autoignition occurrence. A semidetailed mechanism (137 species and 633 reactions) for n-heptane/iso-octane/toluene is used in this study. Two numerical schemes based on the LW integral are proposed and incorporated into a computational fluid dynamics platform, to model autoignition in a 3D configuration, when a spray is injected into a constant volume bomb under diesel engine conditions. Tabulated chemistry, a traditional method of modelling autoignition using information from pre-calculated igniting diffusion flames, is also used for comparison purposes. The associated predicted pressure profiles are compared with experimental measurements.  相似文献   

6.
A general model for multi-modal turbulent combustion is achievable with two-dimensional manifold equations that use the mixture fraction and a generalized progress variable as coordinates. Information about the underlying mode of combustion is encoded in three scalar dissipation rates that appear as parameters in the two-dimensional equations. In this work, Large Eddy Simulation (LES) of a multi-modal turbulent lifted hydrogen jet flame in a vitiated coflow is performed using this new turbulent combustion model, leveraging both convolution-on-the-fly and In-Situ Adaptive Tabulation for computational tractability. The simulation predicts a lifted flame consistent with observations from past experiments. The feasibility of such a model implemented in LES is examined, and the cost per timestep is found to be comparable to conventional one-dimensional manifold-based models describing one asymptotic mode of combustion. Additionally, the model provides clear interpretability, allowing for combustion mode analysis to be performed with ease by evaluating the scalar dissipation rates and generalized progress variable source term. This analysis is used to show that the flame is stabilized by autoignition and has a trailing nonpremixed flame. Furthermore, transport of progress variable from the most reactive mixture fraction towards richer mixtures at the centerline is found to be important.  相似文献   

7.
Multiple flame regimes are encountered in industrial combustion chambers, where premixed, stratified and non-premixed flame regions may coexist. To obtain a predictive tool for pollutant formation predictions, chemical flame modeling must take into account the influence of such complex flame structure. The objective of this article is to apply and compare two reduced chemistry models on both laminar and turbulent multi-regime flame configurations in order to analyze their capabilities in predicting flame structure and CO formation. The challenged approaches are (i) a premixed flamelet-based tabulated chemistry method, whose thermochemical variables are parameterized by a mixture fraction and a progress variable, and (ii) a virtual chemical scheme which has been optimized to retrieve the properties of canonical premixed and non-premixed 1-D laminar flames. The methods are first applied to compute a series of laminar partially-premixed methane-air counterflow flames. Results are compared to detailed chemistry simulations. Both approaches reproduced the thermal flame structure but only the virtual chemistry captures the CO formation in all ranges of equivalence ratio from stoichiometry premixed flame to pure non-premixed flame. Finally, the two chemical models combined with the Thickened Flame model for LES are challenged on a piloted turbulent jet flame with inhomogeneous inlet, the Sydney inhomogeneous burner. Mean and RMS of temperature and CO mass fraction radial profiles are compared to available experimental data. Scatter data in mixture fraction space and Wasserstein metric of numerical and experimental data are also studied. The analyses confirm again that the virtual chemistry approach is able to account for the impact of multi-regime turbulent combustion on the CO formation.  相似文献   

8.
The impact of turbulence on the autoignition of a diluted hydrogen jet in a hot co-flow of air is studied numerically. The LES combustion model used is successfully validated against experimental measurements and 3D DNS. Parametric studies are then carried out by separately varying turbulent intensity and integral length scale in the co-flow, while keeping all other boundary conditions unchanged. It is found that the impact of turbulence on the location of autoignition is non-trivial. For weak to mild turbulence, with a turbulent time scale larger than the minimum ignition delay time, autoignition is facilitated by increased turbulence. This is due to enhanced mixing between fuel and air, creating larger most reactive mixture fraction regions. On the other hand, for turbulent time scales smaller than the ignition delay time, the increased scalar dissipation rate dominates over the effect of increased most reactive mixture fraction regions, which leads to a rise in the autoignition length. Turbulence–chemistry interaction mechanisms are analysed in order to explain these observations.  相似文献   

9.
In many practical pulverised coal combustion systems, different oxidiser streams exist, e.g. the primary- and secondary-air streams in the power plant boilers, which makes the modelling of these systems challenging. In this work, three tabulation methods for modelling pulverised coal combustion are evaluated through an a priori study. Pulverised coal flames stabilised in a three-dimensional turbulent counterflow, consisting of different oxidiser streams, are simulated with detailed chemistry first. Then, the thermo-chemical quantities calculated with different tabulation methods are compared to those from detailed chemistry solutions. The comparison shows that the conventional two-stream flamelet model with a fixed oxidiser temperature cannot predict the flame temperature correctly. The conventional two-stream flamelet model is then modified to set the oxidiser temperature equal to the fuel temperature, both of which are varied in the flamelets. By this means, the variations of oxidiser temperature can be considered. It is found that this modified tabulation method performs very well on prediction of the flame temperature. The third tabulation method is an extended three-stream flamelet model that was initially proposed for gaseous combustion. The results show that the reference gaseous temperature profile can be overall reproduced by the extended three-stream flamelet model. Interestingly, it is found that the predictions of major species mass fractions are not sensitive to the oxidiser temperature boundary conditions for the flamelet equations in the a priori analyses.  相似文献   

10.
Tabulated chemistry models allow to include detailed chemistry effects at low cost in numerical simulations of reactive flows. Characteristics of the reactive fluid flows are described by a reduced set of parameters that are representative of the flame structure at small scales so-called flamelets. For a specific turbulent combustion configuration, flamelet combustion closure, with proper formulation of the flame structure can be applied. In this study, flamelet generated manifolds (FGM) combustion closure with progress variable approach were incorporated with OpenFOAM® source code to model combustion within compression ignition engines. For IC engine applications, multi-dimensional flamelet look-up tables for counter flow diffusive flame configuration were generated. Source terms of non-premixed combustion configuration in flamelet domain were tabulated based on pressure, temperature of unburned mixture, mixture fraction, and progress variable. A new frozen flamelet method was introduced to link one dimensional reaction diffusion space to multi-dimensional Computational Fluid Dynamics (CFD) physical space to fulfill correct modelling of thermal state of the engine at expansion stroke when charge composition was changed after combustion and reaction rates were subsided. Predictability of the developed numerical framework were evaluated for Sandia Spray A (constant volume vessel), Spray B (light duty optical Diesel engine), and a heavy duty Diesel engine experiments under Reynolds averaged Navier Stokes turbulence formulation. Results showed that application of multi-dimensional FGM combustion closure can comprehensively predict key parameters such as: ignition delay, in-cylinder pressure, apparent heat release rate, flame lift-off , and flame structure in Diesel engines.  相似文献   

11.
The statistical behaviour and closure of sub-grid scalar fluxes in the context of turbulent premixed combustion have been assessed based on an a priori analysis of a detailed chemistry Direct Numerical Simulation (DNS) database consisting of three hydrogen-air flames spanning the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) regimes of premixed turbulent combustion. The sub-grid scalar fluxes have been extracted by explicit filtering of DNS data. It has been found that the conventional gradient hypothesis model is not appropriate for the closure of sub-grid scalar flux for any scalar in the context of a multispecies system. However, the predictions of the conventional gradient hypothesis exhibit a greater level of qualitative agreement with DNS data for the flame representing the BRZ regime. The aforementioned behaviour has been analysed in terms of the properties of the invariants of the anisotropy tensor in the Lumley triangle. The flames in the CF and TRZ regimes are characterised by a pronounced two-dimensional anisotropy due to strong heat release whereas a three-dimensional and more isotropic behaviour is observed for the flame located in the BRZ regime. Two sub-grid scalar flux models which are capable of predicting counter-gradient transport have been considered for a priori DNS assessment of multispecies systems and have been analysed in terms of both qualitative and quantitative agreements. By combining the latter two sub-grid scalar flux closures, a new modelling strategy is suggested where one model is responsible for properly predicting the conditional mean accurately and the other model is responsible for the correlations between model and unclosed term. Detailed physical explanations for the observed behaviour and an assessment of existing modelling assumptions have been provided. Finally, the classical Bray–Moss–Libby theory for the scalar flux closure has been extended to address multispecies transport in the context of large eddy simulations.  相似文献   

12.
Conditional statistics concerning evaporation and combustion of a spray are investigated in homogeneous, isotropic, and decaying two-dimensional (2D) turbulence. Randomly distributed, polydisperse droplets of n-heptane go through single-step combustion chemistry. Attention is focused on parametric effects of initial Sauter mean radius (SMR), turbulence level and droplet velocity in both reacting and nonreacting cases. A simple linear model for the conditional evaporation rate is proposed and validated against DNS data. A conventional β-probability density function (pdf) is shown to be valid with no peak occurring on the fuel side. The amplitude mapping closure (AMC) model works well for the conditional scalar dissipation rate with evaporating and reacting sprays. Parametric study shows that initial SMR and droplet velocity are major factors affecting conditional flame structures, whereas the effect of reaction is not significant except during autoignition.  相似文献   

13.
The flamelet/progress variable approach (FPVA) has been proposed by Pierce and Moin as a model for turbulent non-premixed combustion in large-eddy simulation. The filtered chemical source term in this model appears in unclosed form, and is modeled by a presumed probability density function (PDF) for the joint PDF of the mixture fraction Z and a flamelet parameter λ. While the marginal PDF of Z can be reasonably approximated by a beta distribution, a model for the conditional PDF of the flamelet parameter needs to be developed. Further, the ability of FPVA to predict extinction and re-ignition has also not been assessed. In this paper, we address these aspects of the model using the DNS database of Sripakagorn et al. It is first shown that the steady flamelet assumption in the context of FPVA leads to good predictions even for high levels of local extinction. Three different models for the conditional PDF of the flamelet parameter are tested in an a priori sense. Results obtained using a delta function to model the conditional PDF of λ lead to an overprediction of the mean temperature, even with only moderate extinction levels. It is shown that if the conditional PDF of λ is modeled by a beta distribution conditioned on Z, then FPVA can predict extinction and re-ignition effects, and good agreement between the model and DNS data for the mean temperature is observed.  相似文献   

14.
A method of chemistry tabulation combined with presumed probability density function (PDF) is applied to simulate piloted premixed jet burner flames with high Karlovitz number using large eddy simulation. Thermo-chemistry states are tabulated by the combination of auto-ignition and extended auto-ignition model. To evaluate the predictive capability of the proposed tabulation method to represent the thermo-chemistry states under the condition of different fresh gases temperature, a-priori study is conducted by performing idealised transient one-dimensional premixed flame simulations. Presumed PDF is used to involve the interaction of turbulence and flame with beta PDF to model the reaction progress variable distribution. Two presumed PDF models, Dirichlet distribution and independent beta distribution, respectively, are applied for representing the interaction between two mixture fractions that are associated with three inlet streams. Comparisons of statistical results show that two presumed PDF models for the two mixture fractions are both capable of predicting temperature and major species profiles, however, they are shown to have a significant effect on the predictions for intermediate species. An analysis of the thermo-chemical state-space representation of the sub-grid scale (SGS) combustion model is performed by comparing correlations between the carbon monoxide mass fraction and temperature. The SGS combustion model based on the proposed chemistry tabulation can reasonably capture the peak value and change trend of intermediate species. Aspects regarding model extensions to adequately predict the peak location of intermediate species are discussed.  相似文献   

15.
The linear relation between the mean rate of product creation and the mean scalar dissipation rate, derived in the seminal paper by K.N.C. Bray [‘The interaction between turbulence and combustion’, Proceedings of the Combustion Institute, Vol. 17 (1979), pp. 223–233], is the cornerstone for models of premixed turbulent combustion that deal with the dissipation rate in order to close the reaction rate. In the present work, this linear relation is straightforwardly validated by analysing data computed earlier in the 3D Direct Numerical Simulation (DNS) of three statistically stationary, 1D, planar turbulent flames associated with the flamelet regime of premixed combustion. Although the linear relation does not hold at the leading and trailing edges of the mean flame brush, such a result is expected within the framework of Bray's theory. However, the present DNS yields substantially larger (smaller) values of an input parameter cm (or K2 = 1/(2cm ? 1)), involved by the studied linear relation, when compared to the commonly used value of cm = 0.7 (or K2 = 2.5). To gain further insight into the issue and into the eventual dependence of cm on mixture composition, the DNS data are combined with the results of numerical simulations of stationary, 1D, planar laminar methane–air flames with complex chemistry, with the results being reported in terms of differently defined combustion progress variables c, i.e. the normalised temperature, density, or mole fraction of CH4, O2, CO2 or H2O. Such a study indicates the dependence of cm both on the definition of c and on the equivalence ratio. Nevertheless, K2 and cm can be estimated by processing the results of simulations of counterpart laminar premixed flames. Similar conclusions were also drawn by skipping the DNS data, but invoking a presumed beta probability density function in order to evaluate cm for the differently defined c's and various equivalence ratios.  相似文献   

16.
A steady flamelet/progress variable (FPV) approach for pulverized coal flames is employed to simulate coal particle burning in a turbulent shear and mixing layer. The configuration consists of a carrier-gas stream of air laden with coal particles that mixes with an oxidizer stream of hot products from lean combustion. Carrier-phase DNS (CP-DNS) are performed, where the turbulent flow field is fully resolved, whereas the coal is represented by Lagrangian point particles. CP-DNS with direct chemistry integration is performed first and provides state-of-the-art validation data for FPV modeling. In a second step the control variables for FPV are extracted from the CP-DNS and used to test if the tabulated manifold can correctly describe the reacting flow (a priorianalysis). Finally a fully coupled a posteriori FPV simulation is performed, where only the FPV control variables are transported, and the chemical state is retrieved from the table and fed back to the flow solver. The a priori results show that the FPV approach is suitable for modeling the complex reacting multiphase flow considered here. The a posteriori data is similarly in good agreement with the reference CP-DNS, although stronger deviations than a priori can be observed. These discrepancies mainly appear in the upper flame (of the present DNS), where premixing and highly unsteady extinction and re-ignition effects play a role, which are difficult to capture by steady non-premixed FPV modeling. However, the present FPV model accurately captures the lower, more stable flame that burns in non-premixed mode.  相似文献   

17.

A transport equation for scalar flux in turbulent premixed flames was modelled on the basis of DNS databases. Fully developed turbulent premixed flames were obtained for three different density ratios of flames with a single-step irreversible reaction, while the turbulent intensity was comparable to the laminar burning velocity. These DNS databases showed that the countergradient diffusion was dominant in the flame region. Analyses of the Favre-averaged transport equation for turbulent scalar flux proved that the pressure related terms and the velocity–reaction rate correlation term played important roles on the countergradient diffusion, while the mean velocity gradient term, the mean progress variable gradient term and dissipation terms suppressed it. Based on these analyses, modelling of the combustion-related terms was discussed. The mean pressure gradient term and the fluctuating pressure term were modelled by scaling, and these models were in good agreement with DNS databases. The dissipation terms and the velocity–reaction rate correlation term were also modelled, and these models mimicked DNS well.  相似文献   

18.
The intricate coupling between coal pyrolysis, gas phase combustion and the emissions of alkali metal, such as sodium, is studied in the early stage of a temporally evolving three-dimensional planar turbulent jet carrying pulverized-coal particles. Complex chemistry is used to account for both the combustion of volatile hydrocarbons and the sodium containing species. The response of the sodium chemistry is analyzed in the mixture fraction space, along with the topology of the reactions zones. Combustion is found to start preferentially in partially premixed flames, which then evolve toward diffusion-like reactive layers and reach chemical equilibrium. From the direct numerical simulation (DNS) database, the possibility of modeling the dynamics of sodium species using one-dimensional premixed flamelet generated manifolds (FGM) is investigated. A chemical lookup table is constructed for the combustion of the partially premixed volatiles and an additional three-dimensional simulation is performed to compare the tabulated sodium species against their reference counterparts with complex chemistry. Quantitative analysis of the performance of the developed chemistry tabulation confirms the validity of the approach. Perspectives for the modeling of sodium emissions in pulverized-coal furnaces and boilers are finally drawn.  相似文献   

19.
The numerical modelling of alkali metal reacting dynamics in turbulent pulverised-coal combustion is discussed using tabulated sodium chemistry in large eddy simulation (LES). A lookup table is constructed from a detailed sodium chemistry mechanism including five sodium species, i.e. Na, NaO, NaO2, NaOH and Na2O2H2, and 24 elementary reactions. This sodium chemistry table contains four coordinates, i.e. the equivalence ratio, the mass fraction of the sodium element, the gas-phase temperature, and a progress variable. The table is first validated against the detailed sodium chemistry mechanism by zero-dimensional simulations. Then, LES of a turbulent pulverised-coal jet flame is performed and major coal-flame parameters compared against experiments. The chemical percolation devolatilisation (CPD) model and the partially stirred reactor (PaSR) model are employed to predict coal pyrolysis and gas-phase combustion, respectively. The response of the five sodium species in the pulverised-coal jet flame is subsequently examined. Finally, a systematic global sensitivity analysis of the sodium lookup table is performed and the accuracy of the proposed tabulated sodium chemistry approach has been calibrated.  相似文献   

20.
Direct numerical simulations were performed to study the autoignition process of n-heptane fuel spray in a turbulent field. For the solution of the carrier gas fluid, the Eulerian method is employed, while for the fuel droplets, the Lagrangian method is used. Droplets are initialized at random locations in a two-dimensional isotropic turbulent field. A chemistry mechanism for n-heptane with 44 species and 112 reactions was adopted to describe the chemical reactions. Three cases with the same initial global equivalence ratio (0.5) and different initial gas phase temperatures (1100, 1200, and 1300 K) were simulated. In addition, two cases with initial global equivalence ratios of 1.0 and 1.5 and initial temperature 1300 K were simulated to examine the effect of equivalence ratio. Evolution of temperature, species mass fraction, reaction rate, and the joint PDF of temperature and equivalence ratio are presented. Effects of the initial gas temperature and equivalence ratio on vaporization and ignition are discussed. A correlation was derived relating ignition delay times to temperature and equivalence ratio. It was confirmed that with the increase of initial temperature, the autoignition occurs earlier. With the increase of the initial equivalence ratio, however, autoignition occurs later due to a larger decrease in gas phase temperature caused by fuel droplet evaporation. The results obtained in this study are expected to be constructive in understanding fuel spray combustion, such as that in homogeneous charge compression ignition systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号