首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A microfluidic system incorporating chemiluminescence detection is reported as a new tool for measuring antioxidant capacity. The detection is based on a peroxyoxalate chemiluminescence (PO-CL) assay with 9,10-bis-(phenylethynyl)anthracene (BPEA) as the fluorescent probe and hydrogen peroxide as the oxidant. Antioxidant plugs injected into the hydrogen peroxide stream result in inhibition of the CL emission which can be quantified and correlated with antioxidant capacity. The PO-CL assay is performed in 800-μm-wide and 800-μm-deep microchannels on a poly(dimethylsiloxane) (PDMS) microchip. Controlled injection of the antioxidant plugs is performed through an injection valve. Of the plant-food based antioxidants tested, β-carotene was found to be the most efficient hydrogen peroxide scavenger (SA HP of 3.27 × 10−3 μmol−1 L), followed by α-tocopherol (SA HP of 2.36 × 10−3 μmol−1 L) and quercetin (SA HP of 0.31 × 10−3 μmol−1 L). Although the method is inherently simple and rapid, excellent analytical performance is afforded in terms of sensitivity, dynamic range, and precision, with RSD values typically below 1.5%. We expect our microfluidic devices to be used for in-the-field antioxidant capacity screening of plant-sourced food and pharmaceutical supplements. Figure Assembled PDMS microchip sandwiched between two glass plates with the top plate containing capillary reservoirs  相似文献   

2.
 A simple, rapid, selective, sensitive and economical method has been developed for the simultaneous determination of trace amounts of palladium and nickel in aqueous methanolic medium using 2-(2-thiazolylazo)-5-dimethylam inobenzoic acid as an analytical reagent by first derivative spectrophotometr y. Palladium is determined by measuring base to peak distance at λ=695.0 nm while nickel is estimated by zero crossing method in the mixture. The linearity is maintained between 0.12–1.75 μg mL−1 for palladium and 0.07–1.60 μg mL−1 for nickel in the pH range 2.8–7.2 and 3.4–8.8 respectively. Seven replicate determinations of 1.0 μ g mL−1 of palladium and 0.8 μg mL−1 of nickel in a mixture give a mean signal height of 0.391 for Pd and 0.541 for Ni with relative standard deviations of 0.9% and 1.2%, respectively. The sensitivity of the proposed method is 0.391 (dA/dλ)/(μg mL−1) for palladium and 0.685 (dA/dλ)/(μg mL−1) for nickel. Various parameters have been optimised for the simultaneous determination of palladium and nickel in various complex samples. Received March 30, 1999. Revision November 25, 1999.  相似文献   

3.
A fast and sensitive liquid chromatography–mass spectrometry method was developed for the determination of ursolic acid (UA) in rat plasma and tissues. Glycyrrhetinic acid was used as the internal standard (IS). Chromatographic separation was performed on a 3.5 μm Zorbax SB-C18 column (30 mm × 2.1 mm) with a mobile phase consisting of methanol and aqueous 10 mM ammonium acetate using gradient elution. Quantification was performed by selected ion monitoring with (m/z) 455 for UA and (m/z) 469 for the IS. The method was validated in the concentration range of 2.5 − 1470 ng mL−1 for plasma samples and 20 − 11760 ng g−1 for tissue homogenates. The intra- and inter-day assay of precision in plasma and tissues ranged from 1.6% to 7.1% and 3.7% to 9.0%, respectively, and the intra- and inter-day assay accuracy was 84.2 − 106.9% and 82.1 − 108.1%, respectively. Recoveries in plasma and tissues ranged from 83.2% to 106.2%. The limits of detections were 0.5 ng mL−1 or 4.0 ng g−1. The recoveries for all samples were >90%, except for liver, which indicated that ursolic acid may metabolize in liver. The main pharmacokinetic parameters obtained were T max = 0.42 ± 0.11 h, C max = 1.10 ± 0.31 μg mL−1, AUC = 1.45 ± 0.21 μg h mL−1 and K a = 5.64 ± 1.89 h−1. The concentrations of UA in rat lung, spleen, liver, heart, and cerebellum were studied for the first time. This method is validated and could be applicable to the investigation of the pharmacokinetics and tissue distribution of UA in rats.  相似文献   

4.
A high-performance liquid chromatography–UV method for determining DCJW concentration in rat plasma was developed. The method described was applied to a pharmacokinetics study of intramuscular injection in rats. The plasma samples were deproteinized with acetonitrile in a one-step extraction. The HPLC assay was carried out using a VP-ODS column and the mobile phase consisting of acetonitrile–water (80:20, v/v) was used at a flow rate of 1.0 mL min−1 for the effective eluting DCJW. The detection of the analyte peak area was achieved by setting a UV detector at 314 nm with no interfering plasma peak. The method was fully validated with the following validation parameters: linearity range 0.06–10 μg mL−1 (r > 0.999); absolute recoveries of DCJW were 97.44–103.46% from rat plasma; limit of quantification, 0.06 μg mL−1 and limit of detection, 0.02 μg mL−1. The method was further used to determine the concentration–time profiles of DCJW in the rat plasma following intramuscular injection of DCJW solution at a dose of 1.2 mg kg−1. Maximum plasma concentration (C max) and area under the plasma concentration–time curve (AUC) for DCJW were 140.20 ng mL−1 and 2405.28 ng h mL−1.  相似文献   

5.
 Simple, rapid, sensitive and selective methods for the determination of Cr(III) and W(VI) with flavonol derivatives in the presence of surface-active agents are proposed. In the pH ranges 3.4–4.2 and 1.9–2.5, the molar absorptivities of Cr(III)-morin-emulsifier S (EFA) and W(VI)-morin-polyvinylpyrrolidone (PVP) systems are 1.13×105 and 2.13×104 L mol−1 cm−1 at 435 and 415 nm, respectively. The Cr(III)-quercetin-PVP and W(VI)-quercetin-cetylpyridinium bromide (CPB) systems are formed in the pH ranges 4–4.6 and 2.2–2.8 with molar absorptivities 1.02×105 and 9.02×104 L. mol−1 cm−1 at 441 and 419 nm, respectively. The linear dynamic ranges for the determination of Cr(III) and W(VI) with morin in the presence of EFA and PVP are 0.03–0.46 and 0.71–8.1 μg mL−1, respectively. The corresponding ranges with quercetin are 0.04–0.54 and 0.14–2.1 μg mL−1 of Cr(III) and W(VI), respectively. The r.s.d (n = 10) for the determination of 0.25 and 3.7 μg mL−1 of Cr(III) and W(VI) with morin and their detection limits are 0.88 and 0.99% and 0.016 and 0.63 μg mL−1, respectively. Using quercetin, the r.s.d (n = 10) for 0.22 and 1.2 μg mL−1 of Cr(III) and W(VI) and their detection limits are 0.92 and 0.91% and 0.015 and 0.08 μg mL−1, respectively. The critical evaluation of the proposed methods is performed by statistical analysis of the experimental data. The proposed methods are applied to determine Cr in steel, non-ferrous alloys, wastewater and mud filtrate and to the determination of W in steel. Received March 8, 1999. Revision January 21, 2000.  相似文献   

6.
Summary A high-performance liquid chromatographic method with amperometric detection has been developed for the determination of levels of clozapine (CLZ) and its active metabolite N-desmethylclozapine (DMC) in human plasma. The analysis was performed on a 5 μm C8 reversed phase column (150×4.6 mm i.d.), with acetonitrile-phosphate buffer (pH 3.5), as the mobile phase. The detection voltage was +800 mV and the cell and column temperature were 50°C. Linear responses were obtained between 2 ng mL−1 and 100 ng mL−1. Absolute recovery for both clozapine and desmethylclozapine exceeded 88% and the detection limit was 1 ng mL−1. Repeatability, intermediate precision and accuracy were satisfactory. The method, which is rapid, sensitive and selective, has been applied to therapeutic drug monitoring in schizophrenic patients following administration of Leponex? tablets. In 21 patients in steady state at a mean daily clozapine dosage of 358 mg (ranging from 150 to 500 mg day−1), clozapine levels averaged 379 ng mL−1 (ranging from 102 to 818 ng mL−1) and DMC levels averaged 233 ng mL−1 (ranging from 70 to 540 ng mL−1). The method requires only a very small amount of plasma (100 μL), and thus it is suitable for pharmacokinetic studies, as well as for therapeutic drug monitoring.  相似文献   

7.
A new methodology was developed for analysis of aldehydes and ketones in fuel ethanol by high-performance liquid chromatography (HPLC) coupled to electrochemical detection. The electrochemical oxidation of 5-hydroxymethylfurfural, 2-furfuraldehyde, butyraldehyde, acetone and methyl ethyl ketone derivatized with 2,4-dinitrophenylhydrazine (DNPH) at glassy carbon electrode present a well defined wave at +0.94 V; +0.99 V; +1.29 V; +1.15 V and +1.18 V, respectively which are the basis for its determination on electrochemical detector. The carbonyl compounds derivatized were separated by a reverse-phase column under isocratic conditions with a mobile phase containing a binary mixture of methanol / LiClO4(aq) at a concentration of 1.0 × 10−3 mol L−1 (80:20 v/v) and a flow-rate of 1.1mL min−1 . The optimum potential for the electrochemical detection of aldehydes-DNPH and ketones-DNPH was +1.0 V vs. Ag/AgCl. The analytical curve of aldehydes-DNPH and ketones-DNPH presented linearity over the range 5.0 to 400.0 ng mL−1, with detection limits of 1.7 to 2.0 ng mL−1 and quantification limits from 5.0 to 6.2 ng mL−1, using injection volume of 20 μL. The proposed methodology was simple, low time-consuming (15 min/analysis) and presented analytical recovery higher than 95%.  相似文献   

8.
A single optosensing device based on lanthanide-sensitized luminescence was developed for determination of p-aminobenzoic acid (PABA). The method is based on the formation of a complex between PABA and Tb(III) immobilized on the solid phase (QAE A-25 resin) placed inside the flow cell. NaCl (1 M) was used as carrier solution and HCl (0.05 M) as eluent. The sample solutions of PABA (100 μL) containing Tb(III) and buffered at pH = 6.0 were injected into the carrier stream and the luminescence was measured at λ ex = 290 nm and λ em = 546 nm. The method shows a linear range from 0.2 to 6.0 μg mL−1 with an RSD of 1.2% (n = 10) and a sampling frequency of 22 h−1. A remarkable characteristic of the method is its high selectivity which allows it to be satisfactorily applied to the analysis of PABA in pharmaceutical samples without prior treatment. Figure Typical emission bands of Tb(III) in a solid-phase PABA–Tb(III) luminescence spectrum  相似文献   

9.
Summary A sensitive HPLC method with marbofloxacin (MAR) as internal standard and fluorescence detection is described for the analysis of ofloxacin (OFL) enantiomers in plasma samples. Plasma samples were prepared by adding phosphate buffer (pH 7.4, 0.1m), then extracted with trichloromethane.S-OFL,R-OFL, and the internal standard were separated on a reversed-phase column with water-methanol, 85.5∶14.5, as mobile phase. The concentrations ofS-OFL andR-OFL eluting from the column (retention times 7.5 and 8.7 min, respectively) were monitored by fluorescence detection withλ ex = 331 andλ em = 488 nm. The detection and quantitation limits were 10 and 20 ng mL−1, respectively, forS-OFL and 11 and 21 ng mL−1 forR-OFL. Response was linearly related to concentration in the range 10 to 2500 ng mL−1. Recovery was close to 93% for both compounds. The method was applied to determination of the enantiomers of OFL in plasma samples collected during pharmacokinetic studies.  相似文献   

10.
Summary A rapid and simple liquid-chromatographic method has been developed for on-line quantification of amphetamine in biological fluids. Untreated samples (20 μL) are injected directly into the chromatographic system and purified on a 20 mm×2.1 mm i.d. pre-column packed with 30 μm Hypersil C18 stationary phase. After clean-up the analyte is transferred to the analytical column (125 mm×4 mm i.d., 5 μm LiChrospher 100 RP18) for derivatization and separation using a mixture of acetonitrile and the derivatization reagent (o-phthaldialdehyde andN-acetyl-L-cysteine) as the mobile phase. The experimental conditions for on-line derivatization and resolution of the amphetamine have been optimized, and the results have been compared with those obtained by derivatizing the analyte in pre-column mode. The method described has been applied to the determination of amphetamine in plasma and urine. Good linearity and reproducibility were obtained in the 0.1–10.0 μg mL−1 concentration range, and limits of detection were 25 ng mL−1 and 10 ng mL−1 with UV and fluorescence detection, respectively. The procedure described is very simple and rapid, because no off-line manipulation of the sample is required; the total analysis time is approximately 8 min.  相似文献   

11.
An integrated solid-phase spectrophotometry–FIA method is proposed for simultaneous determination of the mixture of saccharin (1,2-benzisothiazol-3(2H)-one-1,1-dioxide; E-954) (SA) and aspartame (N-l-α-aspartyl-l-phenylalanine-1-methyl ester; E-951) (AS). The procedure is based on on-line preconcentration of AS on a C18 silica gel minicolumn and separation from SA, followed by measurement, at λ=210 nm, of the absorbance of SA which is transiently retained on the adsorbent Sephadex G-25 placed in the flow-through cell of a monochannel FIA setup using pH 3.0 orthophosphoric acid–dihydrogen phosphate buffer, 3.75×10–3 mol L−1, as carrier. Subsequent desorption of AS with methanol enables its determination at λ=205 nm. With a sampling frequency of 10 h−1, the applicable concentration range, the detection limit, and the relative standard deviation were from 1.0 to 200.0 μg mL−1, 0.30 μg mL−1, and 1.0% (80 μg mL−1, n=10), respectively, for SA and from 10.0 to 200.0 μg mL−1, 1.4 μg mL−1, and 1.6% (100 μg mL−1, n=10) for AS. The method was used to determine the amounts of aspartame and saccharin in sweets and drinks. Recovery was always between 99 and 101%. The method enabled satisfactory determination of blends of SA and AS in low-calorie and dietary products and the results were compared with those from an HPLC reference method.  相似文献   

12.
A cheap, simple and rapid sample preparation method has been developed for quantification of ulifloxacin, the active metabolite of prulifloxacin in human plasma, by HPLC with fluorescence detection using lemefloxacin as the internal standard. One-step protein precipitation with 10% perchloric acid (2:1, v/v) on a 200 μL sample was used. The separation was performed at 30 °C on a C18 column using an eluent of acetonitrile-0.5% triethylamine buffer. The compounds were monitored at λ ex of 280 nm, λ em of 425 nm. The calibration curve for ulifloxacin in human plasma was linear over the range 0.01–1.00 μg mL−1. The lower limit of quantification is 0.01 μg mL−1. The intra- and inter-day precision ranged from 3.0 to 6.7%, respectively. The method had been used for clinical pharmacokinetic studies of prulifloxacin formulation product after oral administration to healthy volunteers. Jun Wen and Zhenyu Zhu have equal contribution to this work.  相似文献   

13.
A new chemiluminescence (CL) method combined with flow injection technique is described for the determination of Cr(III) and total Cr. It is found that a strong CL signal is generated from the reaction of Cr(III), lucigenin and KIO4 in alkaline condition. The determination of total Cr is performed by pre-reduction of Cr(VI) to Cr(III) by using H2SO3. The CL intensity is linearly related to the concentration of Cr in the range 4.0 × 10−10–1.0 × 10−6 g mL−1. The detection limit (3s b) is 1 × 10−10 g mL−1 Cr and the relative standard deviation is 1.9% (5.0 × 10−8 g mL−1 of Cr(III) solution, n = 11). The method was applied to the determination of Cr(III) and total Cr in water samples and compared satisfactorily with the official method.  相似文献   

14.
 A new fluorimetric procedure for the determination of thiamine using flow injection analysis is proposed. The method is based on the derivatization reaction of the primary amine group with o-phthalaldehyde in the presence of 2-mercaptoethanol using fluorimetric detection. The calibration graph based on peak area was linear in the range 0.2–6 ng mL−1. The detection limit was close to 0.1 ng mL−1. The method was applied to the determination of the vitamin in commercial pharmaceutical preparations. Received March 31, 1999. Revision October 15, 1999.  相似文献   

15.
The voltammetric behaviour and amperometric detection of tetracycline (TC) antibiotics at multi-wall carbon nanotube modified glassy carbon electrodes (MWCNT-GCE) are reported. Cyclic voltammograms of TCs showed enhanced oxidation responses at the MWCNT-GCE with respect to the bare GCE, attributable to the increased active electrode surface area. Hydrodynamic voltammograms obtained by flow-injection with amperometric detection at the MWCNT-GCE led us to select a potential value E det = +1.20 V. The repeatability of the amperometric responses was much better than that achieved with bare GCE (RSD ranged from 7 to 12%), with RSD values for i p of around 3%, thus demonstrating the antifouling capability of MWCNT modified electrodes. An HPLC method with amperometric electrochemical detection (ED) at the MWCNT-GCE was developed for tetracycline, oxytetracycline (OTC), chlortetracycline and doxycycline (DC). A mobile phase consisting of 18:82 acetonitrile/0.05 mol L−1 phosphate buffer of pH 2.5 was selected. The limits of detection ranged from 0.09 μmol L−1 for OTC to 0.44 μmol L−1 for DC. The possibility to carry out multiresidue analysis is demonstrated. The HPLC-ED/MWCNT-GCE method was applied to the analysis of fish farm pool water and underground well water samples spiked with the four TCs at 2.0 × 10−7 mol L−1. Solid-phase extraction was accomplished for the preconcentration of the analytes and clean-up of the samples. Recoveries ranged from 87 ± 6 to 99 ± 3%. Under preconcentration conditions, limits of detection in the water samples were between 0.50 and 3.10 ng mL−1.  相似文献   

16.
A sensitive catalytic kinetic spectrofluorimetric approach for determining ng mL−1 levels of rhodium is presented, and the possible mechanism of the catalytic reaction was investigated. The determination is based on the catalytic property of rhodium to enhance the reaction of o-vanillin salicylhydrazone (OVSH) with potassium bromate in a water-ethanol medium at pH 4.80 and 45 °C. The presence of β-cyclodextrin (β-CD) obviously sensitized the assay due to its high inclusion ability towards OVSH. Under optimized experimental conditions, fluorescence measurements of the β-CD-rhodium-KBrO3-OVSH catalytic kinetic reaction system were carried out in its fluorescent band centered at λex = 333 nm and λem = 476 nm, respectively. The calibration graph was linear over the concentration range of 0.47–100 ng mL−1 with a detection limit of 0.14 ng mL−1. The effect of interferences was discussed, and the results show that the extraction method can be used to separate rhodium from interference species such as iridium. The proposed method, applied to several synthetic mixtures containing rhodium mixed with varying amounts of metal salts, produced satisfactory results.  相似文献   

17.
A simple, rapid and selective RP-HPLC method was developed and validated for the determination of ketorolac and five piperazinylalkyl ester prodrugs. A binary isocratic mobile phase composed of a mixture of 65:35 (v/v) 0.02 M phosphate buffer (pH 5.4) and acetonitrile was used on a C18 column (125 × 4 mm, 5 μm). The injection volume was 25 μL and the detection wavelength was 314 nm and the flow rate was 1.5 mL min−1. The method exhibited excellent linearity with R 2 of no less than 0.999 and intra-assay and inter-assay precision that were less than the maximum amount allowed according to Horwitz equation. The accuracy was found to be within the allowed ±15%. The limits of detection for the analytes were between 0.060 and 0.220 μg mL−1 and the limits of quantification were between 0.183 and 0.667 μg mL−1. This method was used successfully for the study of the solubility, stability and partition coefficients of piperazinylalkyl ester prodrugs of ketorolac.  相似文献   

18.
An automated procedure for the assay of procaine hydrochloride in human blood and pharmaceuticals was developed using a sequential injection (SI) technique with fluorometric detection and fluorescamine as the fluorescence probe. A few microliters of fluorescamine and procaine hydrochloride solutions were used in the SI system leading to the formation of a derivative, which was then excited by a 400-nm LED and whose emitted fluorescence was monitored at a wavelength of 494 nm. A linear calibration graph was obtained with 10–200 ng mL−1 (procaine) by loading 10.0 μL of sample solution and 5.0 μL of fluorescamine solution (both 0.125 % m/v). A detection limit of 2.6 ng mL−1, defined as 3 times the blank standard deviation (3σ), was achieved along with a sampling frequency of 25 h−1 and a precision of 2.1 % RSD at the 50.0 ng mL−1 level. Procaine contents in injection solutions from various pharmaceutical manufactures were analyzed and reasonable agreement was achieved between the values obtained by using the present procedure and the documented spectrophotometry, and both were coincident with the nominal concentrations. In addition, the degradation of procaine in human blood was investigated. A fast degradation of procaine in human blood was observed for the first 30 min, while afterwards the degradation was retarded.  相似文献   

19.
A miniaturized dispersive liquid–liquid microextraction (DLLME) procedure coupled to liquid chromatography (LC) with fluorimetric detection was evaluated for the preconcentration and determination of thiamine (vitamin B1). Derivatization was carried out by chemical oxidation of thiamine with 5 × 10−5 M ferricyanide at pH 13 to form fluorescent thiochrome. For DLLME, 0.5 mL of acetonitrile (dispersing solvent) containing 90 μL of tetrachloroethane (extraction solvent) was rapidly injected into 10 mL of sample solution containing the derivatized thiochrome and 24% (w/v) sodium chloride, thereby forming a cloudy solution. Phase separation was carried out by centrifugation, and a volume of 20 μL of the sedimented phase was submitted to LC. The mobile phase was a mixture of a 90% (v/v) 10 mM KH2PO4 (pH 7) solution and 10% (v/v) acetonitrile at 1 mL min−1. An amide-based stationary phase involving a ligand with amide groups and the endcapping of trimethylsilyl was used. Specificity, linearity, precision, recovery, and sensitivity were satisfactory. Calibration graph was carried out by the standard additions method and was linear between 1 and 10 ng mL−1. The detection limit was 0.09 ng mL−1. The selectivity of the method was judged from the absence of interfering peaks at the thiamine elution time for blank chromatograms of unspiked samples. A relative standard deviation of 3.2% was obtained for a standard solution containing thiamine at 5 ng mL−1. The esters thiamine monophosphate and thiamine pyrophosphate can also be determined by submitting the sample to successive acid and enzymatic treatments. The method was applied to the determination of thiamine in different foods such as beer, brewer’s yeast, honey, and baby foods including infant formulas, fermented milk, cereals, and purees. For the analysis of solid samples, a previous extraction step was applied based on an acid hydrolysis with trichloroacetic acid. The reliability of the procedure was checked by analyzing a certified reference material, pig’s liver (CRM 487). The value obtained was 8.76 ± 0.2 μg g−1 thiamine, which is in excellent agreement with the certified value, 8.6 ± 1.1 μg g−1.  相似文献   

20.
Tetracycline antibiotics (TCs) such as doxycycline (DOTC), chlortetracycline (CTC), oxytetracycline (OTC), and tetracycline (TC) react with Cu(II) in pH 3.5 BR buffer medium to form 1:1 cationic chelates, which further react with titan yellow to form 2:1 ion association complexes. These result in great enhancement of resonance Rayleigh scattering (RRS) and the appearance of new RRS spectra. The ion association complexes of DOTC, CTC, OTC, and TC have similar spectral characteristics and their maximum RRS wavelengths are all located at 464 nm. The quantitative determination ranges and the detection limits (3σ) of the four TCs are 0.037–4.8 μg mL−1 and 11.2 ng mL−1 for DOTC, 0.041–5.2 μg mL−1 and 12.4 ng mL−1 for CTC, 0.050–4.8 μg mL−1 and 15.1 ng mL−1 for TC, and 0.088–5.0 μg mL−1 and 26.3 ng mL−1 for OTC, respectively. The optimum reaction conditions, the effects of foreign substances, the structure of ternary complexes, and the reaction mechanism are discussed. A sensitive, rapid, and simple RRS method for the determination of DOTC has been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号