首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This work considers different unbundling options for local loop unbundling in order to provide multi-operator access and consider the economical impact for the fiber-to-the-home next-generation access entrants to deploy such alternatives. It is shown that deploying wavelength division multiplexing networks is an efficient strategy to perform local loop unbundling while upgrading the gigabit passive optical network for the new era where high bandwidths are necessary for satisfying customer demand. In areas with a high population density, wavelength division multiplexing techniques are the most suitable for entrant operators to access the incumbent's network and provide service.  相似文献   

2.
Abstract

In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet–wavelength division multiplexing optical code division multiplexing–passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet–passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet–passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.  相似文献   

3.
Abstract

A survivable wavelength division multiplexing passive optical network enabling both point-to-point service and broadcast service is presented and demonstrated. This architecture provides an automatic traffic recovery against feeder and distribution fiber link failure, respectively. In addition, it also simplifies the protection design for multiple services transmission in wavelength division multiplexing passive optical networks.  相似文献   

4.
Abstract

Optical networks are evolving at a fast pace from traditional synchronous digital hierarchy/synchronous optical network (SDH/SONET) and wavelength division multiplexing (WDM) infrastructures, used by client network layers in overlay mode, to a converged multi-service and multi-technology network able to transport traditional time division multiplexing (TDM) traffic and new packet traffic in a flexible way. Alcatel-Lucent is leading the network transformation required by network providers to offer data transport while guaranteeing the same quality and reliability typical of classical transport services. The introduction of new data communication services requires an evolution of the network management platform that needs to integrate new management applications associated with the new technologies and services. The resulting network has to be integrated from service provisioning and management system viewpoints to optimize its use and to reduce the in-field modifications of the transport network. This article describes specificities in the management of multi-service networks, identifying the management architecture able to support the rapid evolution of such environment.  相似文献   

5.
Abstract

A novel bandwidth assignment algorithm in wavelength division multiplexing Ethernet passive optical networks, called a dynamic wavelength assignment service level agreement, is proposed to efficiently provide subscriber differentiation. Simulation results show that the dynamic wavelength assignment service level agreement outperforms other bandwidth allocation algorithms in wavelength division multiplexing Ethernet passive optical networks, as it makes a fairer bandwidth distribution than other methods and is able to overcome the non-allowed packet fragmentation of the Ethernet passive optical network standard. Consequently, it greatly increases the achieved throughput and always ensures a minimum guaranteed bandwidth to every priority subscriber. Furthermore, the new algorithm obtains lower mean packet delay and packet loss rate for the highest priority subscribers when compared with other bandwidth distribution schemes in wavelength division multiplexing Ethernet passive optical networks.  相似文献   

6.
ABSTRACT

The offering of demanding telecommunication services as promised by the 5G specifications raise the necessity for high capacity, flexible, adaptive, and power conserving fronthaul. Toward this goal, the role of the passive optical network which is responsible for interconnecting the central office (CO) with the cell-sites is crucial. Among the latest related technologies that need to be integrated in the context of the next generation passive optical networks (NGPONs), the most promising for increasing the provided bandwidth, is the optical spatial multiplexing. In this paper, we present the key 5G technologies, focusing on spatial division multiplexing, which constitutes the main innovation of the blueSPACE 5G Infrastructure Public Private Partnership (5G PPP) project. Exploiting the recent developments on multicore fibers (MCFs), optical beamforming networks (OBFNs), analog radio over fiber (ARoF), and spatial-spectral resources granularity in the context of Spectrally Spatially Flexible Optical Networks (SS-FONs), we describe a complete approach for the 5G fronthaul, emphasizing on the efficient allocation of optical resources while aiming at minimizing energy consumption. The modeled optimization problem is thoroughly presented, and the introduced scheme is evaluated through a real-world based simulation scenario, exhibiting quite promising results.  相似文献   

7.
基于正交频分复用无源光网络的动态带宽分配算法研究   总被引:1,自引:0,他引:1  
介绍了一种应用于未来大容量、多业务接入场景下的称为光正交频分复用无源光网络的下一代接入网技术,并提出了一种基于此结构的称为基于服务质量需求的固定周期流水线轮询动态带宽分配算法.该算法通过应用二级带宽分配机制、带宽预申请机制和最小带宽申请优先原则等方法,有效地保障了在大容量、多业务接入场景下各个业务不同的服务质量需求.为研究其性能,建立了该算法的仿真模型并进行了对比仿真.仿真结果显示该算法以低时延和低抖动有效地支持快速转发业务,同时平衡了确保转发业务和尽力而为业务之间的优先性和相对公平性,并且实现了不同光网络单元间的同优先级业务带宽分配的公平性.与传统的动态带宽分配算法算法相比,基于服务质量需求的固定周期流水线轮询动态带宽分配算法具有执行效率高、算法复杂度低、性能良好等优点,并且能够更好地适应光正交频分复用无源光网络的特性,发挥网络最大的性能.  相似文献   

8.
The fiber-wireless (FiWi) access network is a prestigious architecture for next generation (NG) access network. NG access networks are proposed to provide high data rate, broadband multiple services, scalable bandwidth, and flexible communication for manifold wireless end-users (WEUs). In this paper, the FiWi access network is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul with data rate of 2.5 Gb/s and wireless fidelity-worldwide interoperability for microwave access (WiFi–WiMAX) technologies at the wireless front-end along a 50 m–5 km wireless links with data rate of 54–30 Mb/s, respectively. The performance of the optical backhaul and the wireless front-end, in the proposed FiWi access network, has been evaluated in terms of bit error rate (BER), error vector magnitude (EVM), and signal-to-noise ratio (SNR) of the physical (PHY) layer. The scalability of the optical backhaul based on maximum split ratio of 1/32 for each wavelength channel and a fiber length of 24 km from the central office (CO) to the access point (AP) is analyzed with bit error rate (BER) of 10−9.  相似文献   

9.
In this article, techno-economic analysis of a fiber-wireless access network is presented. With high bandwidth capacity of the gigabit passive optical network and with cost-effectiveness of very high throughput 802.11ac wireless local area networks that enable user mobility in the wireless segment, fiber-wireless access networks can be considered as an alternative to the fiber-to-the-home architecture for next generation access networks. Analysis based on the proposed scenario here, shows that a fiber-wireless access network is a more cost-effective solution in densely populated areas, but with some introduced improvements, even other geotypes can be considered as a commercially-viable solution.  相似文献   

10.
Abstract

This article experimentally demonstrates a hybrid fiber–free-space passive optical network that enables high spectral density, aggregated capacity, and total throughput through ultra-dense wavelength-division multiplexing baseband and radio-over-fiber channels. Ultra-dense wavelength-division multiplexing 10-Gb/s Nyquist-shaped 16-ary quadrature amplitude modulation, 10-Gb/s radio-over-fiber orthogonal frequency-division multiplexing, and 8.75-Gb/s baseband orthogonal frequency-division multiplexing signals per user were transmitted through a maximum 40-km passive optical network, which includes a 6-m free-space optics link with acceptable performance.  相似文献   

11.
Abstract

A wavelength-utilized rate-doubled wavelength division multiplexing passive optical network based on a self-seeding light source is proposed. The effect of distributed fiber length and power division ratio on the upstream-signal power is analyzed; the result indicates that raising the power division ratio can increase the upstream-signal power when it is lower than 0.86. The power difference between upstream signals caused by the length difference of distributed fibers is also expanded with power division ratio; thus, the power division ratio should be decreased to a proper level to reduce the power difference when the length difference is too large.  相似文献   

12.
A solution for implementing multiple secure virtual private networks over a passive optical network using electronic code division multiple access is proposed and experimentally demonstrated. The multiple virtual private networking capability is experimentally demonstrated with 40 Mb/s data multiplexed with a 640 Mb/s electronic code that is unique to each of the virtual private networks in the passive optical network, and the transmission of the electronically coded data is carried out using Fabry-Perot laser diodes. A theoretical scalability analysis for electronic code division multiple access based virtual private networks over a passive optical network is also carried out to identify the performance limits of the scheme. Several sources of noise such as optical beat interference and multiple access interference that are present in the receiver are considered with different operating system parameters such as transmitted optical power, spectral width of the broadband optical source, and processing gain to study the scalability of the network.  相似文献   

13.
Current passive optical networks (PONs) (Gigabit PON (GPON) and Ethernet PON (EPON)) will run out of bandwidth sooner or later due to the ever increasing bandwidth demand. The aforementioned and the new next generation PON stage 1 (NG-PON1) standards (10 Gigabit-PON (XG-PON) and 10 Gigabit Ethernet-PON (10G-EPON)) are based on time division multiplexing (TDM-PON), which has its limitations such as limited bandwidth. In this paper, hybrid TDM–WDM PON and stacked TDM-PON architectures are evaluated and compared as solutions for NG-PON stage 2 (NG-PON2). Both architectures are fully capable of satisfying the requirements of NG-PON2. Stacked TDM-PON has the advantage of being compatible with the currently deployed optical distribution network (ODN). Considering four wavelengths and 10 Gb/s/wavelength, the hybrid TDM–WDM PON does not seem to offer noticeable advantages over stacked TDM-PON.  相似文献   

14.
介绍了一种应用于未来大容量、多业务接入场景下的称为光正交频分复用无源光网络的下一代接入网技术,并提出了一种基于此结构的称为基于服务质量需求的固定周期流水线轮询动态带宽分配算法.该算法通过应用二级带宽分配机制、带宽预申请机制和最小带宽申请优先原则等方法,有效地保障了在大容量、多业务接入场景下各个业务不同的服务质量需求.为...  相似文献   

15.
Abstract

This article introduces the main achievements resulting from the DWDM/ODC project. The five areas of research activity within the DWDM/ODC project cover some of the main issues of design and development of dense wavelength division multiplexing systems for transparent optical networks. These issues are: performance assessment with arbitrary optical filtering; performance of signaling formats; dispersion compensation strategies for directly and externally modulated systems in presence of nonlinear transmission-induced degradation; and the impact of noise and crosstalk in the extent of transparent optical networks. All five areas of research activity have contributed significantly to a better understanding of the limitations present in dense wavelength division multiplexing systems.  相似文献   

16.
An extended reach 10 Gb/s wavelength division multiplexing passive optical networks (WDM-PONs) system based on reflective semiconductor optical amplifier (RSOA) is proposed by using power pre-emphasized orthogonal frequency division multiplexing (OFDM) signal. Experimental results show that the proposed technique can effectively enhance the system performance against the limited bandwidth and chirp induced fading effect from direct modulation of RSOA. The receiver sensitivity is improved by 5 dB at the limit of BER for forward error correction (FEC) code over the 60 km and 85 km fiber transmission without any dispersion compensation module.  相似文献   

17.
周雯  陈鹤鸣 《物理学报》2015,64(6):64210-064210
随着全光通信的快速发展, 波分复用传输系统已不能满足高容量光网络的需求, 而模分复用技术利用有限的稳定模式作为独立信道传递信息, 可以成倍地提高系统容量和频谱效率, 是构建未来光网络的关键技术之一. 本文基于掺Bi复合稀土铁石榴石的磁光效应, 设计了1.55 μm波段的二维三角晶格光子晶体模分复用器. 在该光子晶体结构中引入缺陷, 形成模式分束波导, 通过外加磁场改变其在不同偏振模式下的磁导率, 从而控制TE, TM模式的传输, 实现了1.55 μm波段的模分复用. 利用平面波展开法和时域有限差分法对此模分复用器进行了能带和传输特性分析, 结果表明: TE和TM模式的透射率均高于92%, 信道隔离度分别为19.7 dB和42.1 dB. 这些特性在未来的大容量光传输系统中有着重要的应用前景.  相似文献   

18.
N/A 《光子学报》2014,43(7):706002
We are developing an optical layer-2s witch network that uses both wavelength-division multiplexing and time-division multiplexing technologies for efficient traffic aggregation in metro networks.For efficient traffic aggregation,path bandwidth control is key because it strongly affects bandwidth efficiency.For this paper,we propose a dynamic time-slot allocation method that uses periodic information of difference values of traffic variation.This method can derive near-optimal allocation with lower computational cost,which enlarges the maximum available network size compared with conventional time-slot allocation methods.Numerical results show that the proposed method enables dynamic path control in 1K-node-scale optical layer-2s witch network,which leads to cost-effective metro networks.  相似文献   

19.
The implementation of wavelength division multiplexing (WDM) in communication access networks is dependent upon the availability of low cost optical sources. One possible alternative to lasers is to employ slices of a broadband optical source obtained via optical filters, which may be tuneable. This paper considers the behaviour of such a spectrally sliced optical transmission system as a function of the bandwidth of a realistic receiver electrical filter for the first time. The treatment includes distortion from optical fibre dispersion over several kilometres of fibre. The optimum ratio between the electrical bandwidth and the optical bit rate is found to be ~0.6 for a fifth-order Bessel filter  相似文献   

20.

The following article describes an advanced dense wavelength division multiplexing (DWDM) Optical Network developed by L-3 Photonics. The network, configured as an amplified optical bus, carries traffic simultaneously in both directions, using multiple wavelengths. As a result, data distribution is of the form peer-to-multi-peer, it is protocol independent, and it is scalable. The network leverages the rapid growth in commercial optical technologies, including wavelength division multiplexing (WDM), and when applied to military and commercial platforms such as aircraft, ships, unmanned and other vehicles, provides a cost-effective, low-weight, high-speed, and high noise-immune data distribution system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号