首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hiroyuki Ohshima 《Electrophoresis》2021,42(21-22):2182-2188
Approximate analytic expressions are derived for the electrophoretic mobility of a weakly charged spherical soft particle consisting of the particle core covered with a surface layer of polymers in an electrolyte solution. The particle core and the surface polymer layer may be charged or uncharged. The obtained electrophoretic mobility expressions, which involve neither numerical integration nor exponential integrals, are found to be in excellent agreement with the exact numerical results. It is also found that the obtained mobility expressions reproduce all the previously derived limiting expressions and approximate analytic expressions for the electrophoretic mobility of a weakly charged spherical soft particle.  相似文献   

2.
A general theory is developed for the electrophoretic mobility of spherical soft particles (i.e., spherical hard colloidal particles of radius a coated with a layer of polyelectrolytes of thickness d) in concentrated suspensions in an electrolyte solution as a function of the particle volume fraction φ on the basis of Kuwabara's cell model. In the limit d-->0, the mobility expression obtained tends to that for spherical hard particles in concentrated suspensions, whereas in the limit a-->0, it becomes that for spherical polyelectrolytes (charged porous spheres with no particle core). Simple approximate analytic mobility expressions are derived for the case where relaxation effect is negligible. It is found that in practical cases, the φ dependence of the mobility is negligible for da, the mobility strongly decreases with increasing φ. Copyright 2000 Academic Press.  相似文献   

3.
A theory of the dynamic electrophoretic mobility of a spherical soft particle (that is, a polyelectrolyte-coated spherical particle) in an oscillating electric field is presented. In the absence of the polyelectrolyte layer a spherical soft particle becomes a spherical hard particle, while in the absence of the particle core it tends to a spherical polyelectrolyte. The present theory thus covers two extreme cases, that is, dynamic electrophoresis of hard particles and that of spherical polyelectrolytes. Simple analytic mobility expressions are derived. It is shown how the dynamic electrophoretic mobility of a soft particle depends on the volume charge density distributed in the polyelectrolyte layer, on the frictional coefficient characterizing the frictional forces exerted by the polymer segments on the liquid flow in the polyelectrolyte layer, on the particle size, and on the frequency of the applied oscillating electric field. Copyright 2001 Academic Press.  相似文献   

4.
Electrokinetic equations for electrophoresis of a soft particle (that is, a hard particle covered with a layer of polyelectrolytes) have been solved previously under the conditions that the net force acting on the soft particle as a whole (the particle core plus the polyelectrolyte layer) must be zero and that the electrical force acting on the polymer segment is balanced with a frictional force exerted by the liquid flow (J. Colloid Interface Sci. 163, 474 (1994)). In the present work we replaced the latter condition by the alternative and more appropriate condition that pressure is continuous at the boundary between the surface layer and the surrounding electrolyte solution to solve the electrokinetic equations and obtained the general mobility expression for the electrophoretic mobility of a spherical soft particle. It is found that the general mobility expression thus obtained reproduces all of the approximate mobility expressions derived previously and, in addition, that the continuous pressure condition leads to the correct limiting behavior of the electrophoretic mobility in the case where the frictional coefficient tends to zero (this behavior cannot be derived from the force balance condition for the polyelectrolyte layer). Copyright 2000 Academic Press.  相似文献   

5.
Electrostatic interaction between two soft particles (i.e., polyelectrolyte-coated particles) in an electrolyte solution is discussed. An approximate analytic expression for the interaction energy between two dissimilar soft spheres is derived by applying Derjaguin's approximation to the corresponding interaction energy between two parallel dissimilar soft plates for the case where the density of fixed charges within the polyelectrolyte layer is low. The obtained expression covers various limiting cases that include hard sphere/hard sphere interaction, spherical polyelectrolyte/spherical polyelectrolyte interaction, soft sphere/spherical polyelectrolyte interaction, soft sphere/hard sphere interaction, and spherical polyelectrolyte/hard sphere interaction.  相似文献   

6.
 A general theory for the electrophoresis of a cylindrical soft particle (i.e., a cylindrical hard colloidal particle coated with a layer of ion-penetrable polyelectrolytes) in an electrolyte solution in an applied transverse or tangential electric field is proposed. This theory unites two different electrophoresis theories for cylindrical hard particles and for cylindrical polyelectrolytes. That is, the general mobility expression obtained in this paper tends to the mobility expression for a cylindrical hard particle for the case where the polyelectrolyte layer is absent or the frictional coefficient in the poly-electrolyte layer becomes infinity, whereas it tends to that for a cylin-drical polyelectrolyte in the absence of the particle core. Simple approximate analytic mobility expressions are also presented. Received: 29 August 1996 Accepted: 7 November 1996  相似文献   

7.
In this work, we report original analytical expressions defining the electrophoretic mobility of composite soft particles comprising an inner core and a surrounding polymer shell with differentiated permeabilities to ions from aqueous background electrolyte and to fluid flow developed under applied DC field conditions. The existence of dielectric permittivity gradients operational at the core/shell and shell/solution interfaces is accounted for within the Debye–Hückel approximation and flat plate configuration valid in the thin double layer regime. The proposed electrophoretic mobility expressions, applicable to weakly to moderately charged particles with size well exceeding the Debye layer thickness, involve the relevant parameters describing the particle core/shell structure and the electrohydrodynamic features of the core and shell particle components. It is shown that the analytical expressions reported so far in literature for the mobility of hard (impermeable) or porous particles correspond to asymptotic limits of the more generic results detailed here. The impacts of dielectric-mediated effects of ions partitioning between bulk solution and particle body on the electrophoretic response are further discussed. The obtained expressions pave the way for a refined quantitative, analytical interpretation of electrophoretic mobility data collected on soft (nano)particles (e.g., functionalized dendrimers and multilayered polyelectrolytic particles) or biological cells (e.g., viruses) for which the classical hard core-soft shell representation is not appropriate.  相似文献   

8.
Electrophoresis of core–shell composite soft particles possessing hydrophobic inner core grafted with highly charged polyelectrolyte layer (PEL) has been studied analytically. The PEL bears pH-dependent charge properties due to the presence of zwitterionic functional groups. The dielectric permittivity of the PEL and bulk aqueous medium were taken to be different, which resulted in the ion-partitioning effect. Objective of this study was to provide a simple expression for the mobility of such core–shell soft particles under Donnan limit where the thickness of the PEL well exceeds the electric double layer thickness. Going beyond the widely used Debye–Hückel linearization, the nonlinear Poisson–Boltzmann equation coupled with Stokes–Darcy–Brinkman equations was solved to determine the electrophoretic mobility. The derived expression further recovers all the existing results for the electrophoretic mobility under various simplified cases. The graphical presentation of the results illustrated the impact of pertinent parameters on the electrophoretic mobility of such a soft particle.  相似文献   

9.
Simple analytic expressions are derived for the electrophoretic mobility of a soft particle consisting of the hard particle core covered with an ion-penetrable surface layer of polyelectrolyte for the case where the electric potential is low. The effect of the distribution of the polymer segments is taken into account by modeling the surface layer as a soft step function with the inhomogeneous distribution width δ. It is shown that the electrophoretic mobility becomes lower than that for the hard step function model and that the maximum deviation of the soft step function model from the hard step function model, which is a function of λδ (where 1/λ is the softness parameter) and κ/λ (where κ is the Debye-Hückel parameter), is 2.7% at λδ = 0.1, 5.1% at λδ = 0.2, and 11% at λδ = 0.5. In the limit of very high electrolyte concentrations, the obtained mobility expression tends to the result derived from the conventional hard step function model. In addition, an analytic expression for the interaction energy between two similar soft plates is derived on the basis of the present soft step function model. The magnitude of the interaction energy is shown to decrease by a factor 1/(1 + κδ)(2). Approximate analytic expressions for the interaction energies between two similar soft spheres and between two similar soft cylinders are also derived with the help of Derjaguin's approximation.  相似文献   

10.
An approximate expression is derived for the electrophoretic mobility of a spherical charged colloidal particle carrying low zeta potential covered with an ion-penetrable uncharged polymer layer in an electrolyte solution. This expression, which becomes Henry's mobility formula in the absence of the polymer layer, is a modification of Henry's mobility formula by taking into account the presence of the uncharged polymer layer.  相似文献   

11.
Ohshima H 《Electrophoresis》2002,23(13):1995-2000
A general expression is derived for the electrophoretic mobility of a spherical charged colloidal particle covered with an uncharged polymer layer in an electrolyte solution in an applied electric field for the case where the particle zeta potential is low. It is assumed that electrolyte ions as well as water molecules can penetrate the polymer layer. Approximate analytic expressions for the electrophoretic mobility of particles carrying low zeta potentials are derived for the two extreme cases in which the particle radius is very large or very small.  相似文献   

12.
To verify the existence of a gel layer at the surface of silica, dependences of the electrophoretic mobility of fresh and aged colloidal silica particles on the KCl concentration are measured. These dependences, corrected for the relaxation/polarization effect, are fitted by analytical expressions based on the model of hard, soft, and brush surfaces. A bad fit is obtained for both silicas when its surface is considered ideal (hard). Much better fits are achieved with the invariable soft layer model for the fresh silica but especially for the aged silica whose surface is less charged probably as a result of an extension and/or loosening of the layer. A perfect fit is found for aged silica when applying a trivial model of the soft polyelectrolyte layer combined with the scaling model of polyelectrolyte brushes.  相似文献   

13.
A general expression is given for the electrophoretic mobility of a large charged colloidal particle coated with a layer of adsorbed charged polymers. A liquid flow within the polymer layer is taken into account. The potential distribution is calculated on the basis of the non-linear Poisson Boltzmann equation. Simple approximate analytic expressions for the electrophoretic mobility are derived for various cases.  相似文献   

14.
Bacterial cells and other biological particles carry charged macromolecules on their surface that form a "soft" ion-permeable layer. In this paper, we test the applicability of an electrokinetic theory for soft particles to characterize the electrophoretic mobility (EPM) and adhesion kinetics of bacterial cells. The theory allows the calculation of two parameters--the electrophoretic softness and the fixed charged density--that define the characteristics of the polyelectrolyte layer at the soft particle surface. The theory also allows the calculation of an outer-surface potential that may better predict the electrostatic interaction of soft particles with solid surfaces. To verify its relevance for bacterial cells, the theory was applied to EPM measurements of two well-characterized Escherichia coli K12 mutants having lipopolysaccharide (LPS) layers of different lengths and molecular compositions. Results showed that the obtained softness and fixed charge density were not directly related to the known characteristics of the LPS of the selected strains. Interaction energy profiles calculated from Derjaguin-Landau-Verwey-Overbeek (DLVO) theory were used to interpret bacterial deposition (adhesion) rates on a pure quartz surface. The outer surface potential failed to predict the low attachment efficiencies of the two bacterial strains. The lack of success in the application of the theory for soft particles to bacterial cells is attributed to chemical and physical heterogeneities of the polyelectrolyte layer at the cell surface.  相似文献   

15.
We present a theoretical study on the electrophoresis of a soft particle with a dielectric charged rigid core grafted with a charge-regulated polyelectrolyte layer. The polyelectrolyte layer possesses either an acidic or a basic functional group and the charge dissociation depends on the local pH and ionic concentration of the electrolyte. The dielectric rigid core is considered to possess a uniform volumetric charge density. The electric potential distribution is determined by computing the Poisson-Boltzmann equation outside the core coupled with a Poisson equation inside the impermeable core along with suitable matching conditions at the core-shell interface. The computed electric field is used to determine the mobility of the particle through an existing analytic expression based on the Debye-Huckel approximation. Our results are found to be in good agreement with the existing solutions for the limiting cases. The influence of the core charge density, ionic concentration, and pH of the electrolyte on the particle mobility is studied for different choice of hydrodynamic penetration length of the polyelectrolyte and dissociation constant of the functional group. The critical value of the pH required to achieve zero mobility is estimated. We find that in a monovalent electrolyte solution, the soft particle with a net negative (positive) charge can have positive (negative) mobility.  相似文献   

16.
Liu KL  Hsu JP  Tseng S 《Electrophoresis》2011,32(21):3053-3061
The influence of the physical properties of the membrane layer of a soft particle, which comprises a rigid core and a porous membrane layer, on its electrophoretic behavior, is investigated. Because that influence was almost always neglected in the previous studies, the corresponding results can be unrealistic. The applicability of the model proposed is verified by the available theoretical and experimental results. The electrophoretic mobility of the particle under various conditions is simulated through varying the dielectric constant, the thickness, and the drag coefficient of the membrane layer, and the bulk ionic concentration. We show that under typical conditions, the deviation in the electrophoretic mobility arising from assuming that the dielectric constant of the membrane layer is the same as that of the bulk liquid phase can be in the order of 50%. In addition, the thicker the membrane layer and/or the higher the bulk ionic concentration, the larger the deviation. If the surface of the core of the particle is charged, as in the case of inorganic particles covered by an artificial membrane layer, the deviation at constant core surface potential is larger than that under other types of charged conditions. However, if the surface of the core is uncharged, as in the case of biocolloids, then that deviation becomes negligible. These findings are of fundamental significance to theoreticians in their analysis on the electrokinetic behaviors of soft particles, and to experimentalists in the interpretation of their data.  相似文献   

17.
A general expression as well as approximate expressions are derived for the electrophoretic mobility of dilute spherical colloidal particles in a salt-free medium containing only counter ions. It is shown that there is a certain critical value of the particle surface charge. When the particle surface charge is lower than the critical value, the electrophoretic mobility is proportional to the particle surface charge or the particle zeta potential, following Hückel's formula. When the particle surface charge is higher than the critical value, the electrophoretic mobility becomes independent of the particle surface charge. This is due to the effect of counter ion condensation in the vicinity of the particle surface.  相似文献   

18.
An approximate analytic expression is derived for the dynamic electrophoretic mobility of a spherical charged colloidal particle in an electrolyte solution in an applied oscillating electric field. This expression, which takes into account the relaxation effects, is applicable for all values of zeta potential at large kappa a (kappa a > or = ca. 30) and omega/2pi < or = ca. 10 MHz, where kappa is the Debye-Hückel parameter, a is the particle radius, and omega is the frequency of the electric field. It is shown that the obtained mobility expression is in excellent agreement with the exact numerical results of Mangelsdorf and White (J. Chem. Soc., Faraday Trans. 1992, 88, 3567).  相似文献   

19.
The electrophoretic mobility of a spherical charged colloidal particle in an electrolyte solution with large kappaa (where kappa= Debye-Hückel parameter and a= particle radius) tends to a nonzero constant value in the limit of high zeta potential. It is demonstrated that this is caused by the fact that counterions condensed near the highly charged particle surface do not contribute to the electrophoretic mobility and only co-ions govern the mobility. A simple method to derive the limiting electrophoretic mobility expression is given. The present method is also applied to cylindrical particles, showing that the leading term of the limiting electrophoretic mobility of a cylindrical particle in a transverse field with large kappaa is the same as that of a spherical particle. The electrophoretic mobility of a cylindrical particle in a tangential field, on the other hand, is proportional to the particle zeta potential and does not exhibit a constant limiting value for high zeta potentials.  相似文献   

20.
A comprehensive theory is presented for the dynamics of metal speciation in monodisperse suspensions of soft spherical particles characterized by a hard core and an ion-permeable shell layer where ligands L are localized. The heterogeneity in the binding site distribution leads to complex formation/dissociation rate constants (denoted as k a (*) and k d (*), respectively) that may substantially differ from their homogeneous solution counterparts (k a and k d). The peculiarities of metal speciation dynamics in soft colloidal ligand dispersions result from the coupling between diffusive transport of free-metal ions M within and around the soft surface layer and the kinetics of ML complex formation/dissociation within the shell component of the particle. The relationship between k a,d (*) and k a,d is derived from the numerical evaluation of the spatial, time-dependent distributions of free and bound metal. For that purpose, the corresponding diffusion equations corrected by the appropriate chemical source term are solved in spherical geometry using a Kuwabara-cell-type representation where the intercellular distance is determined by the volume fraction of soft particles. The numerical study is supported by analytical approaches valid in the short time domain. For dilute dispersions of soft ligand particles, it is shown that the balance between free-metal diffusion within and outside of the shell and the kinetic conversion of M into ML within the particular soft surface layer rapidly establishes a quasi-steady-state regime. For sufficiently long time, chemical equilibrium between the free and bound metal is reached within the reactive particle layer, which corresponds to the true steady-state regime for the system investigated. The analysis reported covers the limiting cases of rigid particles where binding sites are located at the very surface of the particle core (e.g., functionalized latex colloids) and polymeric particles that are devoid of a hard core (e.g., polysaccharide macromolecules, gel particles). For both the transient and quasi-steady-state regimes, the dependence of k a,d (*) on the thickness of the soft surface layer, the radius of the hard core of the particle, and the kinetic rate constants k a,d for homogeneous ligand solutions is thoroughly discussed within the context of dynamic features for colloidal complex systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号