首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Applications of Mathematics - We propose a feasible primal-dual path-following interior-point algorithm for semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only...  相似文献   

2.
In this paper, we establish tractable sum of squares characterizations of the containment of a convex set, defined by a SOS-concave matrix inequality, in a non-convex set, defined by difference of a SOS-convex polynomial and a support function, with Slater’s condition. Using our set containment characterization, we derive a zero duality gap result for a DC optimization problem with a SOS-convex polynomial and a support function, its sum of squares polynomial relaxation dual problem, the semidefinite representation of this dual problem, and the dual problem of the semidefinite programs. Also, we present the relations of their solutions. Finally, through a simple numerical example, we illustrate our results. Particularly, in this example we find the optimal solution of the original problem by calculating the optimal solution of its associated semidefinite problem.  相似文献   

3.
In this paper, we derive bounds for the complex eigenvalues of a nonsymmetric saddle point matrix with a symmetric positive semidefinite (2,2) block, that extend the corresponding previous bounds obtained by Bergamaschi. For the nonsymmetric saddle point problem, we propose a block diagonal preconditioner for the conjugate gradient method in a nonstandard inner product. Numerical experiments are also included to test the performance of the presented preconditioner. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A polynomial optimization problem whose objective function is represented as a sum of positive and even powers of polynomials, called a polynomial least squares problem, is considered. Methods to transform a polynomial least square problem to polynomial semidefinite programs to reduce degrees of the polynomials are discussed. Computational efficiency of solving the original polynomial least squares problem and the transformed polynomial semidefinite programs is compared. Numerical results on selected polynomial least square problems show better computational performance of a transformed polynomial semidefinite program, especially when degrees of the polynomials are larger.  相似文献   

5.
In this work, a linearly constrained minimization of a positive semidefinite quadratic functional is examined. We propose two different approaches to this problem. Our results are concerning infinite dimensional real Hilbert spaces, with a singular positive semidefinite operator related to the functional, and considering as constraint a singular operator. The difference between the proposed approaches for the minimization and previous work on this problem is that it is considered for all vectors belonging to the least squares solutions set, or to the vectors perpendicular to the kernel of the related operator or matrix.  相似文献   

6.
We describe an implementation of nonsymmetric interior-point methods for linear cone programs defined by two types of matrix cones: the cone of positive semidefinite matrices with a given chordal sparsity pattern and its dual cone, the cone of chordal sparse matrices that have a positive semidefinite completion. The implementation takes advantage of fast recursive algorithms for evaluating the function values and derivatives of the logarithmic barrier functions for these cones. We present experimental results of two implementations, one of which is based on an augmented system approach, and a comparison with publicly available interior-point solvers for semidefinite programming.  相似文献   

7.
In this paper, we analyze and characterize the cone of nonsymmetric positive semidefinite matrices (NS-psd). Firstly, we study basic properties of the geometry of the NS-psd cone and show that it is a hyperbolic but not homogeneous cone. Secondly, we prove that the NS-psd cone is a maximal convex subcone of P0-matrix cone which is not convex. But the interior of the NS-psd cone is not a maximal convex subcone of P-matrix cone. As the byproducts, some new sufficient and necessary conditions for a nonsymmetric matrix to be positive semidefinite are given. Finally, we present some properties of metric projection onto the NS-psd cone.  相似文献   

8.
Many theoretical and algorithmic results in semidefinite programming are based on the assumption that Slater's constraint qualification is satisfied for the primal and the associated dual problem. We consider semidefinite problems with zero duality gap for which Slater's condition fails for at least one of the primal and dual problem. We propose a numerically reasonable way of dealing with such semidefinite programs. The new method is based on a standard search direction with damped Newton steps towards primal and dual feasibility.  相似文献   

9.
An important step in a multi-sensor surveillance system is to estimate sensor biases from their noisy asynchronous measurements. This estimation problem is computationally challenging due to the highly nonlinear transformation between the global and local coordinate systems as well as the measurement asynchrony from different sensors. In this paper, we propose a novel nonlinear least squares formulation for the problem by assuming the existence of a reference target moving with an (unknown) constant velocity. We also propose an efficient block coordinate decent (BCD) optimization algorithm, with a judicious initialization, to solve the problem. The proposed BCD algorithm alternately updates the range and azimuth bias estimates by solving linear least squares problems and semidefinite programs. In the absence of measurement noise, the proposed algorithm is guaranteed to find the global solution of the problem and the true biases. Simulation results show that the proposed algorithm significantly outperforms the existing approaches in terms of the root mean square error.  相似文献   

10.
本文提出了一类新的构造0-1多项式规划的半定规划(SDP)松弛方法. 我们首先利用矩阵分解和分片线性逼近给出一种新的SDP松弛, 该 松弛产生的界比标准线性松弛产生的界更紧. 我们还利用 拉格朗日松弛和平方和(SOS)松弛方法给出了一种构造Lasserre的SDP 松弛的新方法.  相似文献   

11.
Positive semidefinite Hankel matrices arise in many important applications. Some of their properties may be lost due to rounding or truncation errors incurred during evaluation. The problem is to find the nearest matrix to a given matrix to retrieve these properties. The problem is converted into a semidefinite programming problem as well as a problem comprising a semidefined program and second-order cone problem. The duality and optimality conditions are obtained and the primal–dual algorithm is outlined. Explicit expressions for a diagonal preconditioned and crossover criteria have been presented. Computational results are presented. A possibility for further improvement is indicated.  相似文献   

12.
The CMRH method [H. Sadok, Méthodes de projections pour les systèmes linéaires et non linéaires, Habilitation thesis, University of Lille1, Lille, France, 1994; H. Sadok, CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm, Numer. Algorithms 20 (1999) 303–321] is an algorithm for solving nonsymmetric linear systems in which the Arnoldi component of GMRES is replaced by the Hessenberg process, which generates Krylov basis vectors which are orthogonal to standard unit basis vectors rather than mutually orthogonal. The iterate is formed from these vectors by solving a small least squares problem involving a Hessenberg matrix. Like GMRES, this method requires one matrix–vector product per iteration. However, it can be implemented to require half as much arithmetic work and less storage. Moreover, numerical experiments show that this method performs accurately and reduces the residual about as fast as GMRES. With this new implementation, we show that the CMRH method is the only method with long-term recurrence which requires not storing at the same time the entire Krylov vectors basis and the original matrix as in the GMRES algorithm. A comparison with Gaussian elimination is provided.  相似文献   

13.
The problem of maximizing the sum of two generalized Rayleigh quotients and the total least squares problem with nonsingular Tikhonov regularization are reformulated as a class of sum-of-linear-ratios minimizing over the cone of symmetric positive semidefinite matrices, which is shown to have a Fully Polynomial Time Approximation Scheme.  相似文献   

14.
15.
We present a decomposition-approximation method for generating convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP). We first develop a general conic program relaxation for QCQP based on a matrix decomposition scheme and polyhedral (piecewise linear) underestimation. By employing suitable matrix cones, we then show that the convex conic relaxation can be reduced to a semidefinite programming (SDP) problem. In particular, we investigate polyhedral underestimations for several classes of matrix cones, including the cones of rank-1 and rank-2 matrices, the cone generated by the coefficient matrices, the cone of positive semidefinite matrices and the cones induced by rank-2 semidefinite inequalities. We demonstrate that in general the new SDP relaxations can generate lower bounds at least as tight as the best known SDP relaxations for QCQP. Moreover, we give examples for which tighter lower bounds can be generated by the new SDP relaxations. We also report comparison results of different convex relaxation schemes for nonconvex QCQP with convex quadratic/linear constraints, nonconvex quadratic constraints and 0–1 constraints.  相似文献   

16.
Given a data matrix, we find its nearest symmetric positive-semidefinite Toeplitz matrix. In this paper, we formulate the problem as an optimization problem with a quadratic objective function and semidefinite constraints. In particular, instead of solving the so-called normal equations, our algorithm eliminates the linear feasibility equations from the start to maintain exact primal and dual feasibility during the course of the algorithm. Subsequently, the search direction is found using an inexact Gauss-Newton method rather than a Newton method on a symmetrized system and is computed using a diagonal preconditioned conjugate-gradient-type method. Computational results illustrate the robustness of the algorithm.  相似文献   

17.
We present a shifted skew-symmetric iteration method for solving the nonsymmetric positive definite or positive semidefinite linear complementarity problems. This method is based on the symmetric and skew-symmetric splitting of the system matrix, which has been adopted to establish efficient splitting iteration methods for solving the nonsymmetric systems of linear equations. Global convergence of the method is proved, and the corresponding inexact splitting iteration scheme is established and analyzed in detail. Numerical results show that the new methods are feasible and effective for solving large sparse and nonsymmetric linear complementarity problems.  相似文献   

18.
This article is concerned with iterative techniques for linear systems of equations arising from a least squares formulation of boundary value problems. In its classical form, the solution of the least squares method is obtained by solving the traditional normal equation. However, for nonsmooth boundary conditions or in the case of refinement at a selected set of interior points, the matrix associated with the normal equation tends to be ill-conditioned. In this case, the least squares method may be formulated as a Powell multiplier method and the equations solved iteratively. Therein we use and compare two different iterative algorithms. The first algorithm is the preconditioned conjugate gradient method applied to the normal equation, while the second is a new algorithm based on the Powell method and formulated on the stabilized dual problem. The two algorithms are first compared on a one-dimensional problem with poorly conditioned matrices. Results show that, for such problems, the new algorithm gives more accurate results. The new algorithm is then applied to a two-dimensional steady state diffusion problem and a boundary layer problem. A comparison between the least squares method of Bramble and Schatz and the new algorithm demonstrates the ability of the new method to give highly accurate results on the boundary, or at a set of given interior collocation points without the deterioration of the condition number of the matrix. Conditions for convergence of the proposed algorithm are discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
In this article we introduce the notion of P-proper splitting for square matrices. For an inconsistent linear system of equations \(Ax =b\), we associate an iterative method based on a P-proper splitting of A, which if convergent, converges to the best least squares solution of this system. We extend a result of Stein, using which we prove that if A is positive semidefinite, then the said iterative method converges. Also, we generalize Sylvester’s law of inertia and as an application of this generalization we establish some properties of P-proper splittings. Finally, we prove a comparison theorem for iterative methods associated with P-proper splittings of a positive semidefinite matrix.  相似文献   

20.
In this paper, we consider a least square semidefinite programming problem under ellipsoidal data uncertainty. We show that the robustification of this uncertain problem can be reformulated as a semidefinite linear programming problem with an additional second-order cone constraint. We then provide an explicit quantitative sensitivity analysis on how the solution under the robustification depends on the size/shape of the ellipsoidal data uncertainty set. Next, we prove that, under suitable constraint qualifications, the reformulation has zero duality gap with its dual problem, even when the primal problem itself is infeasible. The dual problem is equivalent to minimizing a smooth objective function over the Cartesian product of second-order cones and the Euclidean space, which is easy to project onto. Thus, we propose a simple variant of the spectral projected gradient method (Birgin et al. in SIAM J. Optim. 10:1196–1211, 2000) to solve the dual problem. While it is well-known that any accumulation point of the sequence generated from the algorithm is a dual optimal solution, we show in addition that the dual objective value along the sequence generated converges to a finite value if and only if the primal problem is feasible, again under suitable constraint qualifications. This latter fact leads to a simple certificate for primal infeasibility in situations when the primal feasible set lies in a known compact set. As an application, we consider robust correlation stress testing where data uncertainty arises due to untimely recording of portfolio holdings. In our computational experiments on this particular application, our algorithm performs reasonably well on medium-sized problems for real data when finding the optimal solution (if exists) or identifying primal infeasibility, and usually outperforms the standard interior-point solver SDPT3 in terms of CPU time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号