首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A straight forward room-temperature synthesis of V(III) containing complex fluoride K3VF6, using KF and vanadium(III) acetylacetonate is reported. The pale green colored powder was characterized by chemical analysis, powder X-ray diffraction; diffuse reflectance spectroscopy, infrared spectroscopy, Raman spectroscopy, differential scanning calorimetry, scanning electron microscopy, photoluminescence spectroscopy, magnetic susceptibility measurements and photoluminescence spectroscopy. The powder X-ray diffraction pattern was fitted in P21/n space group (monoclinic) with a = 12.106 (1) Å, b = 17.685 (0) Å, c = 11.802 (0) Å, β = 92.23° (1). Differential scanning calorimetry showed phase transitions, occurring at 158 °C and 190 °C. In the FT-IR spectrum, characteristic band for the VF63− group was observed at 508 cm−1. The bands observed in the 335-361 cm−1 region and at 504 cm−1 in the room temperature Raman spectrum of K3VF6 corresponded to the F2g and A1g modes, respectively. The ratio of the frequencies (F2g/A1g) observed in the diffuse reflectance spectrum was fitted on the Tanabe-Sugano diagram to determine the Racah parameter B value of 712 cm−1. Magnetic ordering was not observed down to the lowest measured temperature of 5 K.  相似文献   

2.
Devsharan Verma 《Talanta》2009,78(1):270-65
The present paper deals with a new micro-extraction procedure for selective separation of Cr(VI) in the form of a metaloxy anionic species namely dichromate (Cr2O72−) with N1-hydroxy-N1,N2-diphenylbenzamidine (HOA) in to dichloromethane and its subsequent and rapid diffuse reflectance Fourier transform infrared spectroscopic (DRS-FTIR) determination employing potassium bromide matrix. The diffuse reflectance Fourier transform infrared spectroscopy gives both qualitative and quantitative information about the dichromate. The determination of chromium is based on the analytical peak selection, among the various vibrational peaks, at 902 cm−1. The micro-extraction was based on the liquid-liquid solvent extraction (LLSE) principle. The dichromate binds with the nitrogen and oxygen atoms of N1-hydroxy-N1,N2-diphenylbenzamidine (HOA) and forms 1:2, Cr(VI):HOA complex in 0.1 mol L−1 HCl medium. The formation of above complex, in the acidic medium, is confirmed by the appearance of chocolate-brown color in the micro-extract. The speciation studies of Cr(III) and Cr(VI) is done by conversion of Cr(III) into Cr(VI) utilizing H2O2 as an oxidizing agent. The chemistry of pure dichromate and that of its HOA complex is discussed. The limit of detection (LoD) and the limit of quantification (LoQ) of the method are found to be 0.01 μg g−1 Cr2O72− and 0.05 μg g−1 Cr2O72−, respectively. The standard deviation value and the relative standard value at a level of 10 μg Cr2O72−/0.1 g KBr for = 10 is found to be 0.26 μg Cr2O72− and 2.6%, respectively. The relative standard deviation (n = 8 and 6) for the determination of dichromate (Cr2O72−) in real human biological fluid samples is observed to be in the range 3.1-7.8%.  相似文献   

3.
Gotardo MA  Gigante AC  Pezza L  Pezza HR 《Talanta》2004,64(2):361-365
In this report an analytical method to determine furosemide by using diffuse reflectance spectroscopy is presented. This study shows that this technique can give quantitative results using spot test analysis, particularly in the case of pharmaceuticals containing furosemide. The color spot test could be obtained by reaction between furosemide with p-dimethylaminocinnamaldehyde, in acid medium. This reaction produced a stable complex on filter paper after heating to 80 °C for 5 min. All reflectance measurements were carried out at 585 nm and the linear range was from 7.56×10−3 to 6.05×10−2 mol l−1, with a correlation coefficient of 0.999. The limit of detection was estimated to be 2.49×10−3 mol l−1 (R.S.D.=1.7%) and the effect of common excipients on the reflectance measurements was evaluated. The method was applied to determine furosemide in commercial brands of pharmaceuticals. The results obtained by the proposed method were favorably compared with those of the official method, showing for the first time ever that quantitative spot test analysis by diffuse reflectance could be successfully used to determine furosemide in tablets.  相似文献   

4.
This paper presents the development of a new, rapid and precise analytical method for submicrogram levels of nitrate (NO3) in environmental samples like soil, dry deposit samples, and coarse and fine aerosol particles. The determination of submicrogram levels of nitrate is based on the selection of a quantitative analytical peak at 1385 cm−1 among the three observed vibrational peaks and preparing calibration curves using different known concentrations of nitrate by diffuse reflectance Fourier transform infra red spectrometric (DRIFTS) technique. Pre-weighed and ground infrared (IR) grade KBr was used as substrate over which remarkably wide range of known concentration of nitrate was sprayed and dried. The dried sample was analyzed by DRIFTS and absorbance was measured. Eight calibration curves for four different concentration ranges of nitrate for absorbance as well as peak area were prepared for samples containing lower and relatively higher values of nitrate. The relative standard deviation (n = 8) for the nitrate concentration ranges, 0.05-40, 0.05-1.5, 1.5-25, 5-40 μg/0.1 g KBr were in the range 1.6-2.3% for the above calibration curves. The limit of detection (LOD) of the method is 0.07 μg g−1 NO3. The F- and t-tests were performed to check the analytical quality assurance test. The noteworthy feature of the reported method is the noninterference of any of the associated cations. The results were compared with that of ion-chromatographic method with high degree of acceptability. The method can be applied in wide concentration ranges. The method is reagent less, nondestructive, very fast, repeatable, and accurate and has high sample throughput value.  相似文献   

5.
In this paper, a novel and precise analytical procedure has been developed for quantitative determination of sodium percarbonate (SPC) in washing powder. The method is based on the partial least squares (PLS) treatment of data obtained by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectrometry in wavenumber region of 1435-1342 cm−1. The statistical parameters such as R2, RSD, SEC and SECV have been evaluated, and number of factors, number of scan and the resolution have been optimized. In this method R2 and RSD for five independent analyses of a 0.552 g per 100 g solution of SPC, SEC for 10 standard samples and SECV for five validation samples were 0.998, 1.011, 0.002 and 0.039 respectively.Results obtained for six different commercial washing powders compared well with those obtained with a standard method.  相似文献   

6.
An analytical procedure was developed for the determination of the total amount of sterols in the red alga Asparagopsis armata, globally determined as cholesterol, which is the major sterol contained in red algae. Samples, previously saponified with KOH were preconcentrated on DSC-18 solid phase cartridges (SPE) and eluted with dichloromethane stabilized with β-amylene. Fourier transform infrared (FTIR) spectrometry was employed for selective detection at 1049 cm−1 with a baseline established between 1000 and 1079 cm−1. The results were compared to those obtained by high performance liquid chromatography (HPLC). The concentration obtained in actual samples from alga was 3.37% (w/w) by FTIR and 3.30% (w/w) by HPLC, showing a good comparability between the two methods.  相似文献   

7.
The application of ultrasound for the synthesis of ternary oxide AgMO2 (M=Fe, Ga) was investigated. Crystalline α-AgFeO2 was obtained from the alkaline solutions of silver and iron hydroxides by sonication for 40 minutes. α-AgFeO2 was found to absorb optical radiation in the 300-600 nm range as shown by diffuse reflectance spectroscopy. The Raman spectrum of α-AgFeO2 exhibited two bands at 345 and 638 cm−1. When β-NaFeO2 was sonicated with aqueous silver nitrate solution for 60 minutes, β-AgFeO2 possessing orthorhombic structure was obtained as the ion-exchanged product. The Raman spectrum of β-AgFeO2 showed four strong bands at 295, 432, 630 and 690 cm−1. Sonication of β-NaGaO2 with aqueous silver nitrate solution for 60 minutes resulted in olive green colored, α-AgGaO2. The diffuse reflectance spectrum and the EDX analysis confirmed that the ion-exchange through sonication was complete. The Raman spectrum of α-AgGaO2 had weak bands at 471 and 650 cm−1.  相似文献   

8.
Santosh Kumar Verma 《Talanta》2007,71(4):1546-1552
The feasibility of employing diffuse reflectance Fourier transform infrared spectroscopy (DRS-FTIR) as a sensitive tool in the submicrogram level determination of sulphate (SO42−) was checked in this work. This paper presents the development of a new, rapid and precise analytical method for ppb levels of sulphate (SO42−) in environmental samples like coarse and fine aerosol particles, dry deposits and soil. The determination of submicrogram levels of sulphate is based on the selection of a quantitative analytical peak at 617 cm−1 among the three observed vibrational peaks and preparing calibration curve using different known concentrations of sulphate by diffuse reflectance-Fourier transform infra red spectrometric (DRS-FTIR) technique. Pre-weighed and ground IR grade KBr was used as substrate over which remarkably wide range of known concentration of sulphate was sprayed and dried. The dried sample was analysed by DRS-FTIR. Three calibration curves for three different concentration ranges of sulphate were prepared for samples containing low and relatively higher sulphate contents. The relative standard deviation (n = 8) for the sulphate concentration ranges, 2.5-35.5, 25.5-165, 55-1000 μg/0.5 g KBr, as used to prepare calibration curves, were 2.4%, 2.1% and 1.5%, respectively. The relative standard deviation for the sulphate concentration in real samples were found to be in the range, 3.11-5.76% (n = 16), 4.05-7.75% (n = 16) and 1.48-3.52% (n = 10) for aerosol, dry deposits and soil, respectively. The LOD of the method is 0.20 μg/g SO42−. The F- and t-tests were performed to check the analytical quality assurance test. The noteworthy feature of the reported method is the non-interference of any of the associated anions and cations. The results were compared with that of ion-chromatographic method with high degree of acceptability. The method can be applied in wide concentration ranges. A method for sulphate determination was introduced that did not require pretreatment of samples. This method employed the direct determination of the sulphate. The method is reagent less, nondestructive, very fast, repeatable, and accurate and has high sample throughput value.  相似文献   

9.
The potential of near infrared (NIR) spectroscopy in characterization of organically modified clay minerals is introduced. Selected organo-clays, possibly perspective fillers in clay polymer nanocomposites, were prepared from Na-montmorillonite and different surfactants containing octylammonium chain(s), hexadecylammonium chain(s) or a benzene ring with or without a reactive double bond. Based on the stretching (ν) and bending (δ) vibrations observed in the middle IR (MIR) region, the first overtone (2νXH) and combination (ν + δ)XH modes of XH groups (X = O, C, N) are identified. The effect of larger alkylammonium cations on the vibrations of Si-O and OH bonds in montmorillonite layers is observed. The changes in the intensity of the (ν + δ)H2O band near 5250 cm−1 allows for comparison of the amount of water adsorbed on the montmorillonite surface. The water content decreases with the size of the organic cation reflecting increasing hydrophobicity of the montmorillonite surface. The NIR region shows the 2νCH3 and 2νCH2 bands in the 5900-5500 cm−1 region, an upward shift is observed for the complex band due to 2νCH(Ar) of aromatic benzene ring. The NIR spectra are extremely useful in identification of NH2+, NH+ and vinyl groups, which are difficult to recognize in the MIR spectra of organo-clays due to overlapping with other absorption bands. The intense bands corresponding to overtones and combination vibrations of NH3+ and NH2+ groups are found in the 6600-6050 cm−1 and 5000-4600 cm−1 regions, the (ν + δ)NH+ is unambiguously identified near 4750 cm−1. The characteristic band assigned to 2νCH2 in H2CC is detected near 6130 cm−1.  相似文献   

10.
Antimony (Sb) distribution and accumulation in plants in Xikuangshan Sb deposit area, the only one super-large Sb deposit in the world, Hunan, China were investigated. Results show that soils were severely polluted with the average Sb concentrations up to 5949.20 mg kg− 1. Sb widely occurred in 34 plants with various concentrations ranging from 3.92 mg kg1 to 143.69 mg kg− 1, Equisetaceae family has the highest concentration (98.23 mg kg− 1) while Dryopteridacea family has the lowest one (6.43 mg kg− 1). H. ramosissima species of Equisetaceae family had the highest Sb average concentration of 98.23 mg kg− 1 and P. vittata species of Pteridaceae family showed advantage of accumulating Sb from the contaminated environment (Biological Accumulation Coefficient, BAC = 0.08). Almost all species enriched Sb in their upground part such as shoot, leaf and flower (Biological Transfer Coefficient, BTC > 1), which may attribute to the high acropetal coefficient and Sb transformation from the atmosphere to the plants. P. phaseoloides and D. indicum showed predominantly accumulation of Sb in the upground part with BTC of 6.65 and 5.47, respectively.From the low bioavailable fraction in soils and weak relationship between total soil concentrations in soils and plants, it seems that the Sb bioavailability was limited and varied with different soil sites as well as plant species. Those observations would be significant to the phytoaccumulation and phytoremediation of plants and ecological and environmental risk assessment in Sb contaminated areas.  相似文献   

11.
Ginseng is a precious traditional Chinese herbal medicine. Different parts of ginseng are deemed to have different medicinal values and properties. Rapid and non-destructive methods, such as diffuse reflectance near-infrared spectroscopy (DR-NIR), Fourier transform infrared spectroscopy with attenuated total reflectance (ATR-FTIR), were used to evaluate the differences of epidermis, phloem and xylem in ginseng, respectively. Samples were grounded into 200-mesh fine powder or cut into slices with about 2 mm thickness for DR-NIR and ATR-FTIR spectra measurement, respectively. To explore the classifications between different parts of ginseng, the spectra of DR-NIR and ATR-FTIR were pretreated to calculate first derivative and then was analyzed with principal component analysis (PCA). The PCA results of DR-NIR spectra indicate that epidermis and xylem part of ginseng have distinct difference, and even different positions of epidermis or xylem part show regular and gradual differences. ATR-FTIR spectra directly show that three parts of ginseng are different at 2920, 2852, 1736 and 925.7 cm−1 peaks, especially for epidermis of ginseng. The PCA results of ATR-FTIR spectra yield clear classifications of the three parts of ginseng.  相似文献   

12.
Ghauch A  Deveau PA  Jacob V  Baussand P 《Talanta》2006,68(4):1294-1302
Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR) can be successfully used for the quantitative determination of small amounts of pollutants like the organic fraction of aerosols. The relation between sample concentration and reflectance is described by the Kubelka-Munk equation and was found to be linearly proportional to the absorption band of some functional group. Several parameters like the matter of solid matrix, the cleaning of the sampling support, the treatment of reflectance spectra and the base line correction considerably influenced the reflectance spectra and facilitated data interpretations. The feasibility of the ATR-FTIR was evaluated by the monitoring of specific organic group bands on filters collected in the French cities of Grenoble and Clermont-Ferrand. We have obtained for hydroxyl group a calibration curve by plotting the relative intensity of reflectance versus the concentration. The linearity was obtained for OH from 1 × 10−1 to 1 × 100 mol L−1 with r2 = 0.9959. We can consider that for a direct measurement of the intensity of reflectance, it is possible to perform quantitative ATR-FTIR organic group analysis.  相似文献   

13.
Quantitation of trace levels of domoic acid (DA) in seawater samples usually requires labour-intensive protocols involving chemical derivatization with 9-fluorenylmethylchloroformate and liquid chromatography with fluorescence detection (FMOC–LC–FLD). Procedures based on LC–MS have been published, but time-consuming and costly solid-phase extraction pre-concentration steps are required to achieve suitable detection limits. This paper describes an alternative, simple and inexpensive LC method with ultraviolet detection (LC–UVD) for the routine analysis of trace levels of DA in seawater without the use of sample pre-concentration or derivatization steps. Qualitative confirmation of DA identity in dubious samples can be achieved by mass spectrometry (LC–MS) using the same chromatographic conditions. Addition of an ion-pairing/acidifying agent (0.15% trifluoroacetic acid) to sample extracts and the use of a gradient elution permitted the direct analysis of large sample volumes (100 μl), resulting in both high selectivity and sensitivity (limit of detection = 42 pg ml−1 by LC–UVD and 15 pg ml−1 by LC–MS). Same-day precision varied between 0.4 and 5%, depending on the detection method and DA concentration. Mean recoveries of spiked DA in seawater by LC–UVD were 98.8% at 0.1–10 ng ml−1 and 99.8% at 50–1000 ng ml−1. LC–UVD exhibited strong correlation with FMOC–LC–FLD during inter-laboratory analysis of Pseudo-nitzschia multiseries cultures containing 60–2000 ng DA ml−1 (r2 > 0.99), but more variable results were obtained by LC–MS (r2 = 0.85). This new technique was used to confirm the presence of trace DA levels in low-toxicity Pseudo-nitzschia spp. isolates (0.2–1.6 ng ml−1) and in whole-water field samples (0.3–5.8 ng ml−1), even in the absence of detectable Pseudo-nitzschia spp. cells in the water column.  相似文献   

14.
Two vibrational spectrometry-based methodologies were developed for Metamitron determination in pesticide formulations. Fourier transform-middle infrared (FT-MIR) procedure was based on the extraction of Metamitron by CHCl3 and latter determination by peak area measurement between 1556 and 1533 cm−1, corrected with a two points baseline established from 1572 to 1514 cm−1. Fourier transform-near infrared (FT-NIR) determination was made after the extraction of Metamitron in acetonitrile and measuring the peak area between 6434 and 6394 cm−1 corrected using a two points baseline defined between 6555 and 6228 cm−1. Repeatability, as relative standard deviation, of 5 independent measurements at mg g−1 concentration level, of 0.16% and 0.07% for MIR and NIR and a limit of detection of 0.03 and 0.004 mg g−1 were obtained for MIR and NIR, respectively.NIR determination provides a sample frequency of 120 h−1, higher than that found by MIR and liquid chromatographic methods (60 and 15 h−1, respectively). On the other hand, the NIR method reduces the solvent consumption and waste generation, to only 1 ml acetonitrile per sample as compared with 3.4 ml chloroform required for the MIR determination and 60 ml acetonitrile used in the chromatographic reference procedure. So, vibrational procedures can be considered serious alternatives to long and time consuming chromatographic methods usually recommended for quality control of commercially available pesticide formulations.  相似文献   

15.
A novel N-nitrosamine of cyclam has been synthesized. The N-N bond lengths values, as determined from the X-ray crystal structure, fall in the 1.318(2) and 1.320(2) Å range, smaller than the ones expected for the N-N single bond. The N-NO bond angles are in the 115.0(1)° and 114.8(1)° range. The νNO, νNN, and δN-NO vibrational modes were observed in the infrared spectrum at 1454, 1139, and 555 cm−1, respectively. The photolysis of the cyclam(NO)4 compound gives rise to the nitrosyl release through an heterolytic cleavage of the N-NO bonds, as indicated by the appearance of the νNO+ band at 2228 cm−1 at the expense of decreasing the νNO, νNN, and δN-NO bands.  相似文献   

16.
A new capillary electrophoresis (CE) method for the determination of quinolizidine alkaloids in Sophora medicinal plants was developed. A total of seven alkaloid components (cytisine, sophocarpine, matrine, lehmannine, sophoranol, oxymatrine and oxysophocarpine) were separated within 15 min. The running buffer was a 50 mM phosphate buffer containing 1%HP-β-CD and 3.3% isopropanol. The linear calibration ranges were 5.50-88.0 μg ml−1 for cytisine and lehmannine, 5.00-88.0 μg ml−1 for sophocarpine and sophoranol, 5.60-89.6 μg ml−1 for matrine and oxysophocarpine, and 24.0-384 μg ml−1 for oxymatrine. The recoveries of the seven alkaloids were 96.0-102.9% with relative standard deviations from 1.50 to 3.00% (n = 5). The method was successfully applied to different Sophora medicinal plants including Sophora flavescens, Sophora tonkinensis and Sophora alopecuroides.  相似文献   

17.
A highly sensitive microchip electrophoresis (MCE) method with chemiluminescence (CL) detection was developed for the determination of biogenic amines including agmatine (Agm), epinephrine (E), dopamine (DA), tyramine, and histamine in human urine samples. To achieve a high assay sensitivity, the targeted analytes were pre-column labeled by a CL tagging reagent, N-(4-aminobutyl)-N-ethylisoluminol (ABEI). ABEI-tagged biogenic amines after MCE separation reacted with hydrogen peroxide in the presence of horseradish peroxidase (HRP), producing CL emission. Since no CL reagent was added to the running buffer, the background of the CL detection was extremely low, resulting in a significant improvement in detection sensitivity. Detection limits (S/N = 3) were in the range from 5.9 × 10−8 to 7.7 × 10−8 M for the biogenic amines tested, which were at least 10 times lower than those of the MCE–CL methods previously reported. Separation of a urine sample on a 7 cm glass/poly(dimethylsiloxane) (PDMS) microchip channel was completed within 3 min. Analysis of human urine samples found that the levels of Agm, E and DA were in the ranges of 2.61 × 10−7 to 4.30 × 10−7 M, 0.81 × 10−7 to 1.12 × 10−7 M, and 8.76 × 10−7 to 11.21 × 10−7 M (n = 4), respectively.  相似文献   

18.
{Os(bpy)2}2+ and {Ru(CN)4}2− mononuclear and binuclear complexes with ligands 2,3-di-(2-pyridyl)quinoxaline (dpq) and dipyrido[2,3-a:3′,2′-c]phenazine (ppb) have been prepared. For the binuclear complexes a splitting in oxidation potentials is observed consistent with the formation of mixed-valence species with comproportionation constants (Kcom) ranging from 2.5 × 104 to 1.8 × 106. The electronic absorption spectra of the mixed-valence species reveal IVCT transitions in the near infrared region. The absorption maximum for the IVCT band ranges from 5800 to 9980 cm−1 and the extinction coefficients from 80 to 6300 M−1 cm−1. In general the {Os(bpy)2}2+ complexes show larger Kcom values and more intense IVCT bands than the corresponding {Ru(CN)4}2− complexes.  相似文献   

19.
It has been evaluated the potential of near-infrared (NIR) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) as a way for non-destructive measurement of trace elements at μg kg−1 level in foods, with neither physical nor chemical pre-treatment. Predictive models were developed using partial least-square (PLS) multivariate approaches based on first-order derivative spectra. A critical comparison of two spectral pre-treatments, multiplicative signal correction (MSC) and standard normal variate (SNV) was also made. The PLS models built after using SNV provided the best prediction results for the determination of arsenic and lead in powdered red paprika samples. Relative root-mean-square error of prediction (RRMSEP) of 23% for both metals, arsenic and lead, were found in this study using 20 well characterized samples for calibration and 13 additional samples as validation set. Results derived from this study showed that NIR diffuse reflectance spectroscopy combined with the appropriate chemometric tools could be considered as an useful screening tool for a rapid determination of As and Pb at concentration level of the order of hundred μg kg−1.  相似文献   

20.
A novel Cu-zeolite A/graphene modified glassy carbon electrode for the simultaneous electrochemical determination of dopamine (DA) and ascorbic acid (AA) has been described. The Cu-zeolite A/graphene composites were prepared using Cu2+ functionalized zeolite A and graphene oxide as the precursor, and subsequently reduced by chemical agents. The composites were characterized by X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy. Based on the Cu-zeolite A/graphene-modified electrode, the potential difference between the oxidation peaks of DA and AA was over 200 mV, which was adequate for the simultaneous electrochemical determination of DA and AA. Also the proposed Cu-zeolite/graphene-modified electrode showed higher electrocatalytic performance than zeolite/graphene electrode or graphene-modified electrode. The electrocatalytic oxidation currents of DA and AA were linearly related to the corresponding concentration in the range of 1.0 × 10−7–1.9 × 10−5 M for DA and 2.0 × 10−5–2.0 × 10−4 M for AA. Detection limits (<!-- no-mfc -->S/N<!-- /no-mfc --> = 3) were estimated to be 4.1 × 10−8 M for DA and 1.1 × 10−5 M for AA, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号