首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Onion-like mesoporous carbon vesicle (MCV) with multilayer lamellar structure was synthesized by a simply aqueous emulsion co-assembly approach. Palladium (Pd) nanoparticles were deposited on the MCV matrix (Pd/MCV) by chemical reduction of H2PdCl4 with NaBH4 in aqueous media. Pd(X)/MCV (X wt.% indicates the Pd loading amount) nanocomposites with different Pd loading amount were obtained by adjusting the ratio of precursors. The particular structure of the MCV results in efficient mass transport and the onion-like layers of MCV allows for the obtainment of highly dispersed Pd nanoparticles. The introduction of Pd nanoparticles on the MCV matrix facilitates hydrazine oxidation at more negative potential and delivers higher oxidation current in comparison with MCV. A linear range from 2.0 × 10−8 to 7.1 × 10−5 M and a low detection limit of 14.9 nM for hydrazine are obtained at Pd(25)/MCV nanocomposite modified glassy carbon (GC) electrode. A nonenzymatic amperometric sensor for hydrogen peroxide based on the Pd(25)/MCV nanocomposite modified GC electrode is also developed. Compared with MCV modified GC electrode, the Pd(25)/MCV nanocomposite modified GC electrode displays enhanced amperometric responses towards hydrogen peroxide and gives a linear range from 1.0 × 10−7 to 6.1 × 10−3 M. The Pd(25)/MCV nanocomposite modified GC electrode achieves 95% of the steady-current for hydrogen peroxide within 1 s. The combination of the unique properties of Pd nanoparticles and the porous mesostructure of MCV matrix guarantees the improved analytical performance for hydrazine and hydrogen peroxide.  相似文献   

2.
Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 μA mM−1 cm−2 was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 μM and a response time of 3 s, respectively.  相似文献   

3.
The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing is described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with a detection limit of 0.6 μM glucose was achieved. The biosensor also has good reproducibility, long-term stability and negligible interfering signals from ascorbic acid and uric acid comparing with the response to glucose. The large surface area and good electrical conductivity of graphene suggests that graphene is a potential candidate as a sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications.  相似文献   

4.
Herein, we report a rapid and facile fabrication of Ag/C hybrid by anchoring Ag nanoparticles in amorphous carbon network for application in amperometric sensing of hydrogen peroxide. Ag/C hybrid was prepared by simply mixing silver nitrate aqueous solution with ethylene glycol and diphosphorus pentoxide in one step at room temperature. The embedding of Ag nanoparticles into the amorphous carbon support can greatly strengthen the stability of Ag nanoparticles, protecting them from oxidizing without loss of conductivity. The nanocomposite was investigated by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction technique, X-ray photoelectron spectroscopy and electrochemical measurements. The prepared Ag/C hybrid was fabricated onto the surface of glassy carbon electrode to investigate the sensing property towards hydrogen peroxide. The fabricated electrochemical sensor can determine hydrogen peroxide with a detection limit of 0.1 μM and up to 5.5 mM.  相似文献   

5.
A sensitive hydrogen peroxide (H2O2) sensor was fabricated based on graphene–Pt (GN–Pt) nanocomposite. The GN–Pt was synthesized by photochemical reduction of K2PtCl4 on GNs, and characterized by atomic force microscope (AFM), transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy (EDS). Electrochemical investigations indicated that the GN–Pt exhibited a high peak current and low overpotential towards the reduction of H2O2. The GN–Pt modified glass carbon electrode displayed a wide linear range (2–710 μM), low limit of detection (0.5 μM) and good selectivity for detection of H2O2 with a much higher sensitivity than that of Pt nanoparticles or graphene modified electrode.  相似文献   

6.
Xiujie Bian  E. Jin 《Talanta》2010,81(3):813-83
Pt/polypyrrole (PPy) hybrid hollow microspheres were successfully prepared by wet chemical method via Fe3O4 template and evaluated as electrocatalysts for the reduction of hydrogen peroxide. The as-synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), inductive coupled plasma emission spectrum (ICP) and Fourier-transform infrared spectra (FTIR) measurements. The results exhibited that ultra-high-density Pt nanoparticles (NPs) were well deposited on the PPy shell with the mean diameters of around 4.1 nm. Cyclic voltammetry (CV) results demonstrated that Pt/PPy hybrid hollow microspheres, as enzyme-less catalysts, exhibited good electrocatalytic activity towards the reduction of hydrogen peroxide in 0.1 M phosphate buffer solution (pH = 7.0). The composite had a fast response of less than 2 s with linear range of 1.0-8.0 mM and a relatively low detection limit of 1.2 μM (S/N = 3). The sensitivity of the sensor for H2O2 was 80.4 mA M−1 cm−2.  相似文献   

7.
In this paper, LaNi0.6Co0.4O3 (LNC) nanoparticles were synthesized by the sol–gel method, and the structure and morphology of LNC nanoparticles were characterized by X-ray diffraction spectrum, scanning electron microscopy and transmitting electron microscopy. And then, LNC was used to modify carbon paste electrode (CPE) without any adhesive to fabricate hydrogen peroxide and glucose sensor, and the results demonstrated that LNC exhibited strong electrocatalytical activity by cyclic voltammetry and amperometry. In H2O2 determination, linear response was obtained in the concentration range of 10 nM–100 μM with a detection limit of 1.0 nM. In glucose determination, there was the linear region of 0.05–200 μM with a detection limit of 8.0 nM. Compared with other reports, the proposed sensor also displayed high sensitivity toward H2O2 (1812.84 μA mM−1 cm−2) and glucose (643.0 μA mM−1 cm−2). Moreover, this prepared sensor was applied to detect glucose in blood serum and hydrogen peroxide in toothpaste samples with satisfied results, indicating its possibility in practical application.  相似文献   

8.
A highly sensitive NOx sensor was designed and developed by electrochemical incorporation of copper nanoparticles (CuNP) on single-walled carbon nanotubes (SWCNT)-polypyrrole (PPy) nanocomposite modified Pt electrode. The modified electrodes were characterized by scanning electron microscopy and energy dispersive X-ray analysis. Further, the electrochemical behavior of the CuNP-SWCNT-PPy-Pt electrode was investigated by cyclic voltammetry. It exhibited the characteristic CuNP reversible redox peaks at −0.15 V and −0.3 V vs. Ag/AgCl respectively. The electrocatalytic activity of the CuNP-SWCNT-PPy-Pt electrode towards NOx is four-fold than the CuNP-PPy-Pt electrode. These results clearly revealed that the SWCNT-PPy nanocomposite facilitated the electron transfer from CuNP to Pt electrode and provided an electrochemical approach for the determination of NOx. A linear dependence (r2 = 0.9946) on the NOx concentrations ranging from 0.7 to 2000 μM, with a sensitivity of 0.22 ± 0.002 μA μM−1 cm−2 and detection limit of 0.7 μM was observed for the CuNP-SWCNT-PPy-Pt electrode. In addition, the sensor exhibited good reproducibility and retained stability over a period of one month.  相似文献   

9.
In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene–carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (−0.1 to 0.4 V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL−1 to 40 ng mL−1 with a limit of detection down to 0.03 pg mL−1 (S N−1 = 3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications.  相似文献   

10.
《Analytical letters》2012,45(11):1686-1697
A novel procedure to fabricate a nonenzymatic hydrogen peroxide sensor was developed based on a silver-poly (amide amine) dendrimer nanocomposite synthesized by a microwave procedure. The formation of silver nanoparticles functionalized with the poly (amide amine) dendrimer was confirmed by ultraviolet visible spectroscopy, high resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The electroanalytical properties of a glassy carbon electrode modified with the silver-poly (amide amine) dendrimer nanocomposite were evaluated by the determination of hydrogen peroxide. The electrochemical sensor exhibited rapid response and high sensitivity to hydrogen peroxide with a linear dynamic range from 1.0 × 10–5 to 3.7 × 10–3 molar (r = 0.998) and a limit of detection of 5.06 micromolar. The sensitivity was 30.24 microampere · per millilmolar per square centimeter and the response time was three seconds at a working potential of ?0.35 volt. In addition, the sensor was unaffected by the presence of ascorbic acid, citric acid, and oxalic acid. These results indicate that the silver-poly (amide amine) dendrimer nanocomposite based sensor has application for the determination of hydrogen peroxide.  相似文献   

11.
In this report, a highly sensitive amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes (MnO2/VACNTs) for determination of hydrogen peroxide (H2O2) was fabricated by electrodeposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometer and X-ray diffraction. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were applied to investigate the electrochemical properties of the MnO2/VACNTs nanocomposite electrode. The mechanism for the electrochemical reaction of H2O2 at the MnO2/VACNTs nanocomposite electrode was also discussed. In borate buffer (pH 7.8, 0.20 M), the MnO2/VACNTs nanocomposite electrode exhibits a linear dependence (R = 0.998) on the concentration of H2O2 from 1.2 × 10−6 M to 1.8 × 10−3 M, a high sensitivity of 1.08 × 106 μA M−1 cm−2 and a detection limit of 8.0 × 10−7 M (signal/noise = 3). Meanwhile, the MnO2/VACNTs nanocomposite electrode is also highly resistant towards typical inorganic salts and some biomolecules such as acetic acid, citric acid, uric acid and d-(+)-glucose, etc. In addition, the sensor based on the MnO2/VACNTs nanocomposite electrode was applied for the determination of trace of H2O2 in milk with high accuracy, demonstrating its potential for practical application.  相似文献   

12.
Multi-walled carbon nanotubes (MWNTs) supported platinum nanoparticles with narrow size distribution were prepared by an organic colloidal process with sodium citrate as the coordination reagent and stabilizer, and ethylene glycol as the reduction reagent. A nonenzymatic glucose sensor with high sensitivity based on the Pt/MWNTs electrode was demonstrated. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to investigate the size distributions and the crystal structure of Pt nanoparticles on the MWNTs. The TEM images show that the Pt nanoparticles with about 2–4 nm in diameter are well dispersed on the MWNTs. The Pt/MWNTs shows high electrocatalytic activity towards the oxidation of glucose in 0.1 M NaOH solution. At +0.5 V, the Pt/MWNTs nanocomposite electrode exhibits linearity in the range of 1 mM to 23 mM (R > 0.998) glucose with a response time of 11.6 s. The detection limit is 50 μM (S/N = 3). It was demonstrated that the Pt/MWNTs electrode with high electrocatalytic activity to glucose oxidation could find application in nonenzymatic detection of glucose.  相似文献   

13.
A stepwise method is described for the accurately controlled growth of Pt nanoparticles supported on ordered mesoporous carbons (Pt-OMC) by the nanocasting of carbon and metal precursors in the pore channels of mesoporous silicas functionalized with Si-H groups. Results obtained from N2 adsorption/desorption isotherms and transmission electron microscopy showed well-dispersed Pt nanoparticles (2-3 nm) on Pt-OMC with high surface area (837 m2 g−1) and regular pore channels (2.9 nm), which facilitate reactant/product diffusion. X-ray diffraction and X-ray photoelectron spectroscopy indicated that Pt nanoparticles in the Pt-OMC sample were mostly present in the metallic form of a face-centered cubic (fcc) crystalline structure. The Pt-OMC catalyst was found to have superior electrocatalytic properties during oxygen reduction reaction as compared to typical commercial electrocatalysts.  相似文献   

14.
Electrodeposition of Pt-Pb nanoparticles (PtPbNPs) to multi-walled carbon nanotubes (MWCNTs) resulted in a stable PtPbNP/MWCNT nanocomposite with high electrocatalytic activity to glucose oxidation in either neutral or alkaline medium. More importantly, the nanocomposite electrode with a slight modification exhibited high sensitivity, high selectivity, and low detection limit in amperometric glucose sensing at physiological neutral pH (poised at a negative potential). At +0.30 V in neutral solution, the nanocomposite electrode exhibited linearity up to 11 mM of glucose with a sensitivity of 17.8 μA cm−2 mM−1 and a detection limit of 1.8 μM (S/N = 3). Electroactive ascorbic acid (0.1 mM), uric acid (0.1 mM) and fructose (0.3 mM) invoked only 23%, 14% and 9%, respectively, of the current response obtained for 3 mM glucose. At −0.15 V in neutral solution, the electrode responded linearly to glucose up to 5 mM with a detection limit of 0.16 mM (S/N = 3) and detection sensitivity of ∼18 μA cm−2 mM−1. At this negative potential, ascorbic acid, uric acid, and fructose were not electroactive, therefore, not interfering with glucose sensing. Modification of the nanocomposite electrode with Nafion coating followed by electrodeposition of a second layer of PtPbNPs on the Nafion coated PtPbNP/MWCNT nanocomposite produced a glucose sensor (poised at −0.15 V) with a lower detection limit (7.0 μM at S/N = 3) and comparable sensitivity, selectivity and linearity compared to the PtPbNP/MWCNT nanocomposite. The Nafion coating lowered the detection limit by reducing the background noise, while the second layer of PtPbNPs restored the sensitivity to the level before Nafion coating.  相似文献   

15.
We utilized CuNiO nanoparticles modified graphene sheets (CuNiO–graphene) to the application of enzymeless glucose sensing. The hydrothermal synthesized CuNiO nanoparticles were successfully assembled on graphene sheets. Distinct from general method, the high quality pristine graphene was produced by chemical vapor deposition (CVD) and bubbling transferred on the electrode. Incorporating the excellent electronic transport of graphene and high electrocatalytic activity of CuNiO nanoparticles, the CuNiO–graphene nanocomposite modified electrode possessed strong electrocatalytic ability toward glucose in alkaline media. The proposed nonenzymatic glucose sensor exhibited wide linear range up to 16 mM (two parts, from 0.05 to 6.9 mM and 6.9–16 mM) and high sensitivity (225.75 μA mM−1 cm−2 and 32.44 μA mM−1 cm−2, respectively). Excellent selectivity and acceptable stability were also achieved. Such an electrode would be attractive to sensor construction for its good properties, simple operation and low expense.  相似文献   

16.
Some nanostructures are reported to possess enzyme-mimetic activities similar to those of natural enzymes. Herein, highly-dispersed Pt nanodots on Au nanorods (HD- PtNDs@AuNRs) with mimetic peroxidase activity were designed as an active electrode modifier for fabrication of a hydrogen peroxide (H2O2) electrochemical sensor. The HD-PtNDs@AuNRs were synthesized by a seed-mediated growth approach and confirmed by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and UV–vis spectroscopy. The electrochemical and catalytical performances of HD-PtNDs@AuNRs towards H2O2 reduction were investigated in detail by cyclic voltammetry and amperometry. The HD-PtNDs@AuNRs modified electrode displayed a high catalytic activity to H2O2 at −0.10 V (versus SCE), a rapid response within 5 s, a wide linear range of 2.0–3800.0 μM, a detection limit of 1.2 μM (S/N = 3), and a high sensitivity of 181 μA mM−1 cm−2. These results suggested a promising potential of fabricating H2O2 electrochemical sensor using HD- PtNDs@AuNRs.  相似文献   

17.
Fenghua Li 《Talanta》2010,81(3):1063-5138
A water-soluble and electroactive composite - Pt nanoparticles/polyelectrolyte-functionalized ionic liquid (PFIL)/graphene sheets (GS) nanocomposite was synthesized in one pot. The structure and composition of the Pt/PFIL/GS nanocomposite were studied by means of ultraviolet-visible (UV-vis) and X-ray photoelectron spectra (XPS). Scanning electron microscopy (SEM) and transmission electron microscope (TEM) images reveal Pt nanoparticles are densely dispersed on the transparent thin PFIL-functionalized graphene sheets. The obtained Pt/PFIL/GS nanocomposite-modified electrode was fabricated to simultaneously determine ascorbic acid (AA) and dopamine (DA) by cyclic voltammetry. It is worthwhile noting that the difference between the two peak potentials of AA and DA oxidation is over 200 mV, which leads to distinguishing AA from DA. The detection of increasing concentrations of AA in the presence of DA and the oxidation of continuous addition of DA in the presence of AA were also studied using differential pulse voltammetry. The proposed sensor in real sample analysis was also examined in human urine samples. Three independent oxidation peaks appear in urine sample containing AA and DA. Therefore, the Pt/PFIL/GS nanocomposite might offer a good possibility for applying it to routine analysis of AA and DA in clinical use.  相似文献   

18.
New ordered mesoporous carbons containing nickel oxide nanoparticles have been successfully synthesized by carbonization of sucrose in the presence of nickel acetate inside SBA-15 mesoporous silica template. The obtained samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, and transmission electron microscopy (TEM). The NiO nanoparticles were embedded inside the mesoporous carbon framework due to the simultaneous pyrolysis of nickel acetate during carbonization. The electrochemical testing of the as-made nanocomposites showed a large specific capacitance of 230 F g−1 using 2 M KOH as the electrolyte at room temperature. This is attributed to the nanometer-sized NiO formed inside mesoporous carbons and the high surface area of the mesopores in which the NiO nanoparticles are formed. Furthermore, the synthetic process is proposed as a simple and general method for the preparation of new functionalized mesoporous carbon materials, for various applications in catalysis, sensor or advanced electrode material.  相似文献   

19.
A conducting fluorine-doped tin oxide (FTO) electrode, first modified with zinc oxide nanorods (ZnONRs) and subsequently attached with photosynthesized silver nanoparticles (AgNPs), designated as AgNPs/ZnONRs/FTO electrode, was used as an amperometric sensor for the determination of hydrogen peroxide. The first layer (ZnONRs) was obtained by chemical bath deposition (CBD), and was utilized simultaneously as the catalyst for the photoreduction of Ag ions under UV irradiation and as the matrix for the immobilization of AgNPs. The aspect ratio of ZnONRs to be deposited was optimized by controlling the number of their CBDs to render enough surface area for Ag deposition, and the amount of AgNPs to be attached was controlled by adjusting the UV-irradiation time. The immobilized AgNPs showed excellent electrocatalytic response to the reduction of hydrogen peroxide. The resultant amperometric sensor showed 10-fold enhanced sensitivity for the detection of H2O2, compared to that without AgNPs, i.e., only with a layer of ZnONRs. Amperometric determination of H2O2 at −0.55 V gave a limit of detection of 0.9 μM (S/N = 3) and a sensitivity of 152.1 mA M−1 cm−2 up to 0.983 mM, with a response time (steady-state, t95) of 30-40 s. The selectivity of the sensor was investigated against ascorbic acid (AA) and uric acid (UA). Energy dispersive X-ray (EDX) analysis, transmission electron microscopic (TEM) image, X-ray diffraction (XRD) patterns, cyclic voltammetry (CV), and scanning electron microscopic (SEM) images were utilized to characterize the modified electrode. Sensing properties of the modified electrode were studied both by CV and amperometric analysis.  相似文献   

20.
《中国化学会会志》2018,65(9):1082-1089
In this work, a screen‐printed carbon electrode (SPCE) was modified with a cobalt/porous silicon (Co@PSi) nanocomposite powder to develop a nonenzymatic sensor for the detection of hydrogen peroxide. The Co@PSi nanocomposite was synthesized through the chemical reaction between silicon powder in a HF/HNO3 solution and cobalt cations. In this process, cobalt nanoparticles were anchored on the porous silicon. The structure and morphology of the synthesized nanocomposite were investigated by X‐ray diffraction, Fourier transform infrared spectroscopy, X‐ray photoemission spectroscopy, energy dispersive X‐ray spectroscopy, and field‐emission scanning electron microscopy. The constructed nonenzymatic, screen‐printed sensors based on the Co@PSi nanocomposite showed perfect electrocatalytic oxidation response to hydrogen peroxide over the range 1–170 and 170–3,770 μmol/L with the limit of detection of 0.8 μmol/L. In addition, the Co@PSi‐SPCE sensor exhibited good selectivity for the determination of H2O2 in the presence of common interfering species including glucose, ascorbic acid, uric acid, dopamine, nitrate, and nitrite ions. The constructed electrochemical sensor was successfully used for the determination of H2O2 in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号