首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrocatalytic activity of a CuO flower-like nanostructured electrode was investigated in terms of its application to enzyme-less amperometric H2O2 sensors. The CuO nanoflowers film was directly formed by chemical oxidation of copper foil under hydrothermal condition and then used as active electrode material of non-enzymatic electrochemical sensors for H2O2 detection under alkaline conditions. The sensitivity of the sensor with CuO nanoflowers electrode was 88.4 μA/mM cm2 with a linear response in the range from 4.25 × 10−5 to 4 × 10−2 M and a detection limit of 0.167 μM (S/N = 3). Excellent electrocatalytic activity, large surface-to-volume ratio and efficient electron transport property of CuO nanoflowers electrode have enabled stable and highly sensitive performance for the non-enzymatic H2O2 sensor.  相似文献   

2.
Fluorine tin oxide (FTO) electrode modified by copper oxide microfibers (CuO-MFs) composed of numerous interconnected CuO nanoparticles (CuO-NPs) for nonenzymatic glucose sensor was prepared by electrospinning precursor containing high percentage content of copper nitrate with subsequent calcination. The results of scanning electron microscope (SEM) showed the size of CuO particles composing CuO-MFs depended on the percentage content of copper nitrate in precursor solution. With increasing the percentage content of copper nitrate, the interconnected CuO-NPs would gradually replace the large-size CuO particles to accumulate the CuO-MFs, which have the potential to provide larger surface area and more reaction sites for electrocatalytic activity toward glucose. As a glucose sensor, the CuO-MFs modified FTO electrode prepared by 40 wt.% of copper nitrate exhibited a high sensitivity of 2321 μA mM−1 cm−2 with a low detection limit of 2.2 nM (signal/noise ratio (S/N) = 3). Additionally, the application of the CuO-MFs modified FTO electrode as a glucose sensor for biological samples was demonstrated with satisfactory results.  相似文献   

3.
We utilized CuNiO nanoparticles modified graphene sheets (CuNiO–graphene) to the application of enzymeless glucose sensing. The hydrothermal synthesized CuNiO nanoparticles were successfully assembled on graphene sheets. Distinct from general method, the high quality pristine graphene was produced by chemical vapor deposition (CVD) and bubbling transferred on the electrode. Incorporating the excellent electronic transport of graphene and high electrocatalytic activity of CuNiO nanoparticles, the CuNiO–graphene nanocomposite modified electrode possessed strong electrocatalytic ability toward glucose in alkaline media. The proposed nonenzymatic glucose sensor exhibited wide linear range up to 16 mM (two parts, from 0.05 to 6.9 mM and 6.9–16 mM) and high sensitivity (225.75 μA mM−1 cm−2 and 32.44 μA mM−1 cm−2, respectively). Excellent selectivity and acceptable stability were also achieved. Such an electrode would be attractive to sensor construction for its good properties, simple operation and low expense.  相似文献   

4.
Nickel hydroxide nanoparticles were successfully electrodeposited on graphite electrode (Gr/NiONP) and employed as a robust non-enzymatic glucose sensor. The results of cyclic voltammetry (CV) and chronoamperometry demonstrated that the Gr/NiONP electrode displayed high electrocatalytic activity toward glucose. The oxidation current is directly related to the glucose concentration from 1 μM to 15 mM. Besides, the glucose sensor displayed high sensitivity (2400 μA mM−1 cm−2) with a detection limit of 0.53 μM (S/N = 3) in basic solution. Moreover, the sensor showed excellent selectivity, reproducibility and stability properties. The relative standard deviation is 1.2% for 10 successive measurements in 16 μM glucose. Interestingly, the signal for glucose was maintained at 95% of its initial value even after 6 months of storage under ambient conditions. Gr/NiONP electrode has also been tested to detect glucose in human serum with satisfactory results.  相似文献   

5.
Zhou H  Yang W  Sun C 《Talanta》2008,77(1):366-371
A novel amperometric sensor for the determination of sulfite was fabricated based on multiwalled carbon nanotubes (MWCNTs)/ferrocene-branched chitosan (CHIT-Fc) composites-covered glassy carbon electrode (GCE). The electrochemical behavior of the sensor was investigated in detail by cyclic voltammetry. The apparent surface electron transfer rate constant (Ks) and charge transfer coefficient (α) of the CHIT-Fc/MWCNTs/GCE were also determined by cyclic voltammetry, which were about 1.93 cm s−1 and 0.42, respectively. The sensor displayed good electrocatalytic activity towards the oxidation of sulfite. The peak potential for the oxidation of sulfite was lowered by at least 330 mV compared with that obtained at CHIT/MWCNTs/GCE. In optimal conditions, linear range spans the concentration of sulfite from 5 μM to 1.5 mM and the detection limit was 2.8 μM at a signal-to-noise ratio of 3. The proposed method was used for the determination of sulfite in boiler water. In addition, the sensor has good stability and reproducibility.  相似文献   

6.
Electrodeposition of Pt-Pb nanoparticles (PtPbNPs) to multi-walled carbon nanotubes (MWCNTs) resulted in a stable PtPbNP/MWCNT nanocomposite with high electrocatalytic activity to glucose oxidation in either neutral or alkaline medium. More importantly, the nanocomposite electrode with a slight modification exhibited high sensitivity, high selectivity, and low detection limit in amperometric glucose sensing at physiological neutral pH (poised at a negative potential). At +0.30 V in neutral solution, the nanocomposite electrode exhibited linearity up to 11 mM of glucose with a sensitivity of 17.8 μA cm−2 mM−1 and a detection limit of 1.8 μM (S/N = 3). Electroactive ascorbic acid (0.1 mM), uric acid (0.1 mM) and fructose (0.3 mM) invoked only 23%, 14% and 9%, respectively, of the current response obtained for 3 mM glucose. At −0.15 V in neutral solution, the electrode responded linearly to glucose up to 5 mM with a detection limit of 0.16 mM (S/N = 3) and detection sensitivity of ∼18 μA cm−2 mM−1. At this negative potential, ascorbic acid, uric acid, and fructose were not electroactive, therefore, not interfering with glucose sensing. Modification of the nanocomposite electrode with Nafion coating followed by electrodeposition of a second layer of PtPbNPs on the Nafion coated PtPbNP/MWCNT nanocomposite produced a glucose sensor (poised at −0.15 V) with a lower detection limit (7.0 μM at S/N = 3) and comparable sensitivity, selectivity and linearity compared to the PtPbNP/MWCNT nanocomposite. The Nafion coating lowered the detection limit by reducing the background noise, while the second layer of PtPbNPs restored the sensitivity to the level before Nafion coating.  相似文献   

7.
8.
A new rapid, convenient and sensitive electrochemical method based on a gold nanoparticles modified ITO (Au/ITO) electrode is described for the detection of dopamine and serotonin in the presence of a high concentration of ascorbic acid. The electrocatalytic response was evaluated by differential pulse voltammetry (DPV) and the modified electrode exhibited good electrocatalytic properties towards dopamine and serotonin oxidation with a peak potential of 70 mV and 240 mV lower than that at the bare ITO electrode, respectively. The selective sensing of dopamine is further improved by applying square wave voltammetry (SWV) which leads to the lowering of its detection limit. A similar effect on the detection limit of serotonin was observed on using SWV. Linear calibration curves are obtained in the range 1.0 × 10−9-5.0 × 10−4 M and 1.0 × 10−8-2.5 × 10−4 M with a detection limit of 0.5 nM and 3.0 nM for dopamine and serotonin, respectively. The Au/ITO electrode efficiently determines both the biomolecules simultaneously, even in the presence of a large excess of ascorbic acid. The adequacy of the developed method was evaluated by applying it to the determination of the content of dopamine in dopamine hydrochloride injections. The proposed procedure was also successfully applied to simultaneously detect dopamine and serotonin in human serum and urine.  相似文献   

9.
A simple, rapid and highly selective method for the determination of the most abundant α-dicarbonyl compound in wine and beer has been developed for the first time by employing square wave voltammetry. A novel electrochemical sensor, based on the electrodeposition of platinum nanoparticles onto single wall carbon nanotubes that were cast on a glassy carbon electrode (GCE) substrate, is presented in this paper. This modified electrode exhibited excellent catalytic activity in the electroreduction of methylglyoxal, showing much higher peak currents than those measured on an unmodified GCE. The effects of different experimental and instrumental parameters, such as solution pH and square wave frequency, were examined. The reduction peak current showed a linear range of from 0.1 × 10−6 to 100 × 10−6 M with a 0.9979 correlation coefficient; and a low detection limit of 2.8 × 10−9 M was also obtained. The proposed methodology was successfully applied to the quantitative analysis of methylglyoxal in wine and beer samples. The developed sensor possesses advantageous properties such as a high active surface area, stability, and rapid electron transfer rate, which cumulatively demonstrate high performance toward the electrocatalytic reduction and detection of methylglyoxal.  相似文献   

10.
A novel technique of covalent immobilization of indicator dyes in the preparation of fluorescence sensors is developed. Silver nanoparticles are used as bridges and carriers for anchoring indicator dyes. 3-amino-9-ethylcarbazole (AEC) was employed as an example of indicator dyes with terminal amino groups and covalently immobilized onto the outmost surface of a quartz glass slide. First, the glass slide was functionalized by (3-mercaptopropyl) trimethoxysilane (MPS) to form a thiol-terminated self-assembled monolayer, where silver nanoparticles were strongly bound to the surface through covalent bonding. Then, 16-mercaptohexadecanoic acid (MHDA) was self-assembled to bring carboxylic groups onto the surface of silver nanoparticles. A further activation by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) converted the carboxylic groups into succinimide esters. Finally, the active succinimide esters on the surface of silver nanoparticles were reacted with AEC. Thus, AEC was covalently bound to the glass slide and an AEC-immobilized sensor was obtained. The sensor exhibited very satisfactory reproducibility and reversibility, rapid response and no dye-leaching. Rutin can quench the fluorescence intensity of the sensor and be measured by using the sensor. The linear response of the sensor to rutin covers the range from 2.0 × 10−6 to 1.5 × 10−4 mol L−1 with a detection limit of 8.0 × 10−7 mol L−1. The proposed technique may be feasible to the covalent immobilization of other dyes with primary amino groups.  相似文献   

11.
We have prepared a novel sensor for hydrogen peroxide that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes wired to CuO nanoflowers. The nanoflowers were characterized by X-ray powder diffraction, and the electrode was characterized by cyclic voltammetry (CV) and scanning electron microscopy. The response of the modified electrode towards hydrogen peroxide was investigated by CV and chronoamperometry and showed it to exhibit high electrocatalytic activity, with a linear range from 0.5?μM to 82?μM and a detection limit of 0.16?μM. The sensor also displays excellent selectivity and stability.
Graphical abstract
We have prepared a novel sensor for hydrogen peroxide (H2O2) that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes (MWCNTs) wired to CuO nanoflowers. The scheme shows the construction of the MWCNTs-wired CuO nanoflowers modified electrode and electrocatalytic activity towards H2O2. When H2O2 was added, the cathodic peak current of the CuO-MWCNTs/GCE remarkably increased while its anodic peak current obviously decreased. By increasing the concentration of H2O2, the cathodic peak current further increased while its anodic peak current further decreased. Indicating CuO-MWCNTs/GCE has a remarkable electrocatalytic activity for H2O2. The scheme. The construction of the MWCNTs-wired CuO nanoflowers modified electrode and electrocatalytic activity towards H2O2  相似文献   

12.
Y?ld?z Uluda? 《Talanta》2010,82(1):277-383
A simple and sensitive sensor method for cancer biomarkers [prostate specific antigen (PSA) and PSA-alpha 1-antichymotrypsin (ACT) complex] analysis was developed, to be applied directly with human serum (75%) by using antibody modified quartz crystal microbalance sensor and nanoparticles amplification system. A QCM sensor chip consisting of two sensing array enabling the measurement of an active and control binding events simultaneously on the sensor surface was used in this work. The performance of the assay and the sensor was first optimised and characterised in pure buffer conditions before applying to serum samples. Extensive interference to the QCM signal was observed upon the analysis of serum. Different buffer systems were then formulated and tested for the reduction of the non-specific binding of sera proteins on the sensor surface. A PBS buffer containing 200 μg mL−1 BSA, 0.5 M NaCl, 500 μg mL−1 dextran and 0.5% Tween 20, was then selected which eliminated the interfering signal by 98% and enabled the biomarker detection assay to be performed in 75% human serum. By using Au nanoparticles to enhance the QCM sensor signal, a limit of detection of 0.29 ng mL−1 PSA and PSA-ACT complex (in 75% serum) with a linear dynamic detection range up to 150 ng mL−1 was obtained. With the achieved detection limit in serum samples, the developed QCM assay shows a promising technology for cancer biomarker analysis in patient samples.  相似文献   

13.
Wei Zhao  Xia Qin  Zixia Zhao  Lili Chen  Yuxin Fang 《Talanta》2009,80(2):1029-943
A novel strategy to fabricate hydrogen peroxide (H2O2) sensor was developed based on multi-wall carbon nanotube/silver nanoparticle nanohybrids (MWCNT/Ag nanohybrids) modified gold electrode. The process to synthesize MWCNT/Ag nanohybrids was facile and efficient. In the presence of carboxyl groups functionalized multi-wall carbon nanotubes (MWCNTs), silver nanoparticles (Ag NPs) were in situ generated from AgNO3 aqueous solution and readily attached to the MWCNTs convex surfaces at room temperature, without any additional reducing reagent or irradiation treatment. The formation of MWCNT/Ag nanohybrids product was observed by transmission electron microscope (TEM), and the electrochemical properties of MWCNT/Ag nanohybrids modified gold electrode were characterized by electrochemical measurements. The results showed that this sensor had a favorable catalytic ability for the reduction of H2O2. The resulted sensor could detect H2O2 in a linear range of 0.05-17 mM with a detection limit of 5 × 10−7 M at a signal-to-noise ratio of 3. The sensitivity was calculated as 1.42 μA/mM at a potential of −0.2 V. Additionally, it exhibited good reproducibility, long-term stability and negligible interference of ascorbic acid (AA), uric acid (UA), and acetaminophen (AP).  相似文献   

14.
Li Mao  Ruo Yuan  Yaqin Chai  Xia Yang 《Talanta》2010,80(5):1692-4551
An effective method for immobilization of Ru(bpy)32+ on glassy carbon electrode surface (GCE) is developed for the preparation of a novel electrochemiluminescence sensor. First of all, the positively charged Ru(bpy)32+ is modified on the surface of negatively charged gold nanoparticles (nano-Au) via the electrostatic interactions to obtain the Ru(bpy)32+/nano-Au nano-sphere (abbreviate as Ru-AuNPs). Subsequently, the large amount of Ru-AuNPs are immobilized on the multi-wall carbon nanotubes (MWCNTs)-Nafion homogeneous composite coated GCE by dual interaction: firstly, the Nafion, a kind of typical cation-exchange membrane, can absorb the Ru-AuNPs as the enrichment of cation Ru(bpy)32+ on the Ru-AuNPs surface; secondly, the employment of carboxylic MWCNTs in the Nafion film can also chemosorb the Ru(bpy)32+ cation on the Ru-AuNPs surface to increase the carrier content. At the same time, the experiment confirms that the enhancement of the ECL intensity on the sensor is attributed to following reasons. One hand, the employment of MWCNTs in the Nafion film enlarged the electro-active surface areas to benefit the contact between the signal probe on the composite film and coreactant used as reinforcing agent. On the other hand, the nano-materials of MWCNTs and nano-Au also improve the conductivity of the assembled film to increase the quantity of excited state of Ru(bpy)32+ in the unit time under the electrochemical condition and finally cause better properties in luminescence. In the experiment, the influence of the coreactant tripropylamine (TPA) on proposed ECL sensor is investigated. The logarithm of ECL intensity is proportional to the logarithm of TPA concentration on the range of 4 × 10−10 M to 2.8 × 10−6 M and 2.8 × 10−6 M to 0.71 × 10−3 M. After optimizing these conditions, the ECL sensor with TPA as coreactant is employed to detect a kind of alkaloid medicine, Matrine, for evaluating the practical application in the medicine analysis. The present sensor with TPA as coreactant shows the good response to the medicine concentration of the Matrine from 2.0 × 10−6 M to 6.0 × 10−3 M, which is used to detect the Matrine concentration in the Matrine injection.  相似文献   

15.
Positively charged gold nanoparticle (positively charged nano-Au), which was prepared, characterized by ξ-potential and transmission electron microscopy (TEM) was used in combination with l-cysteine to fabricate a modified electrode for electrocatalytic reaction of biomolecules. Compared with electrodes modified by negatively charged gold nanoparticle/l-cysteine, or l-cysteine alone, the electrode modified by the positively charged gold nanoparticle/l-cysteine exhibited excellent electrochemical behavior toward the oxidation of biomolecules such as ascorbic acid, dopamine and hydrogen peroxide. Moreover, the proposed mechanism for electrocatalytic response of positively charged gold nanoparticle was discussed. The immunosensor showed a specific to ascorbic acid in the range 5.1 × 10−7-6.7 × 10−4 M and a low detection limit of 1.5 × 10−7 M. The experimental results demonstrate that positively charged gold nanoparticle have more efficient electrocatalytic reaction than negatively charged gold nanoparticle, which opens up new approach for fabricating sensor.  相似文献   

16.
Xiujie Bian  E. Jin 《Talanta》2010,81(3):813-83
Pt/polypyrrole (PPy) hybrid hollow microspheres were successfully prepared by wet chemical method via Fe3O4 template and evaluated as electrocatalysts for the reduction of hydrogen peroxide. The as-synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), inductive coupled plasma emission spectrum (ICP) and Fourier-transform infrared spectra (FTIR) measurements. The results exhibited that ultra-high-density Pt nanoparticles (NPs) were well deposited on the PPy shell with the mean diameters of around 4.1 nm. Cyclic voltammetry (CV) results demonstrated that Pt/PPy hybrid hollow microspheres, as enzyme-less catalysts, exhibited good electrocatalytic activity towards the reduction of hydrogen peroxide in 0.1 M phosphate buffer solution (pH = 7.0). The composite had a fast response of less than 2 s with linear range of 1.0-8.0 mM and a relatively low detection limit of 1.2 μM (S/N = 3). The sensitivity of the sensor for H2O2 was 80.4 mA M−1 cm−2.  相似文献   

17.
For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended DNA concentration range, the change of charge transfer resistance was found to have a linear relationship in respect to the logarithm of the complementary oligonucleotides sequence concentrations in the wide range of 1.0 × 10−15 − 1.0 × 10−7 M, with a detection limit of 1.0 × 10−17 M (S/N = 3). The prepared sensor also showed good stability (14 days), reproducibility (RSD = 2.1%) and could be conveniently regenerated via dehybridization in hot water. The significant improvement in sensitivity illustrates that combining gold nanoparticles with the on-site fabricated aligned MWCNT array represents a promising platform for achieving sensitive biosensor for fast mutation screening related to most human cancer types.  相似文献   

18.
Metallic nanoparticles of rhodium were prepared by using the newly synthesized N,N-bis-succinamide-based dendrimer as stabilizers. The Rh nanoparticles were spherical shaped with a particle size of ∼2 nm. The dendrimer Rh-encapsulated nanoparticles (Rh-DENs) were immobilized on glassy carbon electrode (GCE) and their electrocatalytic activity towards hydrogen peroxide reduction was investigated using cyclic voltammetry and chronoamperometry. The Rh-DENs modified GCE showed excellent electrocatalytic activity for hydrogen peroxide reduction reactions. The steady-state cathodic current response of the modified electrode at −0.3 V (vs SCE) in phosphate buffer (pH 7.0) showed a linear response to hydrogen peroxide concentration ranging from 8 to 30 μM with a detection limit and sensitivity of 5 μM and 0.03103 × 10−6 A μM−1, respectively.  相似文献   

19.
Jia D  Dai J  Yuan H  Lei L  Xiao D 《Talanta》2011,85(5):2344-2351
Gold nanoparticles-poly(luminol) (Plu-AuNPs) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode (β-CD-MWCNTs/Plu-AuNPs/GCE) was successfully prepared for simultaneous determination of dopamine (DA) and uric acid (UA). The surface of the modified electrode has been characterized by X-ray photo-electron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscope (SEM) and transmission electron microscope (TEM). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) have been used to investigate the β-CD-MWCNTs/Plu-AuNPs composite film. Gold nanoparticles anchored into poly(luminol) film exhibited catalytic activity for DA. MWCNTs with incorporated β-CD can greatly promote the direct electron transfer. In 0.10 M phosphate buffer solution (PBS, pH 7.0), the DPV response of the β-CD-MWCNTs/Plu-AuNPs/GCE sensor to DA is about 8-fold as compared with the Plu-AuNPs/GCE sensor, and the detection limit for DA is about one order of magnitude lower than the Plu-AuNPs/GCE sensor. The steady-state current response increases linearly with DA concentration from 1.0 × 10−6 to 5.6 × 10−5 M with a low detection limit (S/N = 3) of 1.9 × 10−7 M. Moreover, the interferences of ascorbic acid (AA) and uric acid (UA) are effectively diminished. The applicability of the prepared electrode has been demonstrated by measuring DA contents in dopamine hydrochloride injection.  相似文献   

20.
In this study, an electrochemical ascorbic acid (AA) sensor was constructed based on a glassy carbon electrode modified with palladium nanoparticles supported on graphene oxide (PdNPs-GO). PdNPs with a mean diameter of 2.6 nm were homogeneously deposited on GO sheets by the redox reaction between PdCl42− and GO. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity towards the oxidation of AA in neutral media. Compared to a bare GC or a Pd electrode, the anodic peak potential of AA (0.006 V) at PdNPs-GO modified electrode was shifted negatively, and the large anodic peak potential separation (0.172 V) of AA and dopamine (DA), which could contribute to the synergistic effect of GO and PdNPs, was investigated. A further amperometric experiment proved that the proposed sensor was capable of sensitive and selective sensing of AA even in the presence of DA and uric acid. The modified electrode exhibited a rapid response to AA within 5 s and the amperometric signal showed a good linear correlation to AA concentration in a broad range from 20 μM to 2.28 mM with a correlation coefficient of R = 0.9991. Moreover, the proposed sensor was applied to the determination of AA in vitamin C tablet samples. The satisfactory results obtained indicated that the proposed sensor was promising for the development of novel electrochemical sensing for AA determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号