首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 933 毫秒
1.
Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment. They generate and control aerodynamic forces by flapping their flexible wings. While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight, they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing. In order to test the hypothesis, the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility. The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology, the kinematics, the structural dynamics, the aerodynamics and the fluid–structure interactions of a hovering hawkmoth. The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings. It is found that the aerodynamic forces on the flapping wings are affected by the gust, because of the increase or decrease in relative wingtip velocity or kinematic angle of attack. The passive shape change of flexible wings can, however, reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions, except for the downward gust. Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback, which works passively with minimal delay, and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles.  相似文献   

2.
3.
Wing flapping and morphing can be very beneficial to managing the weight of micro air vehicles through coupling the aerodynamic forces with stability and control. In this letter, harvesting energy from the wing morphing is studied to power cameras, sensors, or communication devices of micro air vehicles and to aid in the management of their power. The aerodynamic loads on flapping wings are simulated using a three-dimensional unsteady vortex lattice method. Active wing shape morphing is considered to enhance the performance of the flapping motion. A gradient-based optimization algorithm is used to pinpoint the optimal kinematics maximizing the propellent efficiency. To benefit from the wing deformation, we place piezoelectric layers near the wing roots. Gauss law is used to estimate the electrical harvested power. We demonstrate that enough power can be generated to operate a camera. Numerical analysis shows the feasibility of exploiting wing morphing to harvest energy and improving the design and performance of micro air vehicles.  相似文献   

4.
仿生扑翼飞行机器人翅型的研制与实验研究   总被引:6,自引:0,他引:6  
模仿昆虫和小鸟飞行的扑翼飞行机器人将举升、悬停和推进功能集于一个扑翼系统,与固定翼和旋翼完全不同,因此研究只能从生物仿生开始。生物飞行的极端复杂性使得进行完整和精确的扑翼飞行分析非常复杂,因此本文在仿生学进展基础上,通过一些合适的假设和简化,建立了仿生翅运动学和空气动力学模型,并以此为基础研制了多种翅型。研制了气动力测量实验平台,对各种翅型进行了实验研究。实验结果表明,研制的翅型都能产生一定的升力,其中柔性翅具有较好的运动性能和气动性能,并且拍动频率和拍动幅度对升力有较大影响。  相似文献   

5.
Flapping wings are promising lift and thrust generators, especially for very low Reynolds numbers. To investigate aeroelastic effects of flexible wings (specifically, wing’s twisting stiffness) on hovering and cruising aerodynamic performance, a flapping-wing system and an experimental setup were designed and built. This system measures the unsteady aerodynamic and inertial forces, power usage, and angular speed of the flapping wing motion for different flapping frequencies and for various wings with different chordwise flexibility. Aerodynamic performance of the vehicle for both no wind (hovering) and cruise condition was investigated. Results show how elastic deformations caused by interaction of inertial and aerodynamic forces with the flexible structure may affect specific power consumption. This information was used here to find a more suitable structural design. The best selected design in our tests performs up to 30% better than others (i.e., less energy consumption for the same lift or thrust generation). This measured aerodynamic information could also be used as a benchmarking data for unsteady flow solvers.  相似文献   

6.
Structural Analysis of a Dragonfly Wing   总被引:2,自引:0,他引:2  
Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned for carrying these loads, is however not fully understood. To study this we made a three-dimensional scan of a dragonfly (Sympetrum vulgatum) fore- and hindwing with a micro-CT scanner. The scans contain the complete venation pattern including thickness variations throughout both wings. We subsequently approximated the forewing architecture with an efficient three-dimensional beam and shell model. We then determined the wing’s natural vibration modes and the wing deformation resulting from analytical estimates of 8 load cases containing aerodynamic and inertial loads (using the finite element solver Abaqus). Based on our computations we find that the inertial loads are 1.5 to 3 times higher than aerodynamic pressure loads. We further find that wing deformation is smaller during the downstroke than during the upstroke, due to structural asymmetry. The natural vibration mode analysis revealed that the structural natural frequency of a dragonfly wing in vacuum is 154 Hz, which is approximately 4.8 times higher than the natural flapping frequency of dragonflies in hovering flight (32.3 Hz). This insight in the structural properties of dragonfly wings could inspire the design of more effective wings for insect-sized flapping micro air vehicles: The passive shape of aeroelastically tailored wings inspired by dragonflies can in principle be designed more precisely compared to sail like wings —which can make the dragonfly-like wings more aerodynamically effective.  相似文献   

7.
昆虫飞行的高升力机理   总被引:30,自引:0,他引:30  
孙茂 《力学进展》2002,32(3):425-434
对近年来关于昆虫产生非定常高升力的研究进行了综述和归纳.这方面的工作对生物学研究和微型飞行器等微型机械的仿生设计有重要意义.研究表明:果蝇等昆虫翅膀的拍动运动可产生很大的非定常升力,其平均值是定常值的2~3倍,足够平衡昆虫的重量,并有较大的富余用于机动飞行;产生高升力有三个因素:一是拍动开始阶段翅的快速加速运动,二是拍动中的不失速机制,三是拍动结束阶段翅的快速上仰运动.人们从能耗的角度考察了这些非定常高升力机制的正确性和可行性.当作悬停飞行的果蝇用以上机制产生平衡其重量的升力时,其比功率(支持单位身体质量所需的功率)约为29W/kg, 生化/机械效率约为17%. 这些值与人们基于对昆虫肌肉力学特性的研究所预估的值接近.果蝇前飞时,其比功率随速度变化的曲线是一J形曲线,而不是象飞机或鸟的那样是一U形曲线;这与人们基于昆虫新陈代谢率的测量数据所推断的结果一致.对于蜻蜒等(功能上)有前、后两对翅膀的昆虫,有以下初步结果:翅的下拍主要产生升力,上挥主要产生推力;下拍时的平均升力系数可达2~3,十分大,上挥时的平均推力系数可达1~2, 也很大,它们主要由非定常效应产生;前、后翅的相互干扰并未起增大升力和推力的作用,反而有一定的不利作用.   相似文献   

8.
Near wake vortex dynamics of a hovering hawkmoth   总被引:1,自引:0,他引:1  
Numerical investigation of vortex dynamics in near wake of a hovering hawkmoth and hovering aerodynamics is conducted to support the development of a biology-inspired dynamic flight simulator for flapping wingbased micro air vehicles. Realistic wing-body morphologies and kinematics are adopted in the numerical simulations. The computed results show 3D mechanisms of vortical flow structures in hawkmoth-like hovering. A horseshoe-shaped primary vortex is observed to wrap around each wing during the early down- and upstroke; the horseshoe-shaped vortex subsequently grows into a doughnut-shaped vortex ring with an intense jet-flow present in its core, forming a downwash. The doughnut-shaped vortex rings of the wing pair eventu- ally break up into two circular vortex rings as they propagate downstream in the wake. The aerodynamic yawing and rolling torques are canceled out due to the symmetric wing kinematics even though the aerodynamic pitching torque shows significant variation with time. On the other hand, the time- varying the aerodynamics pitching torque could make the body a longitudinal oscillation over one flapping cycle.  相似文献   

9.
Ornithopters or mechanical birds produce aerodynamic lift and thrust through the flapping motion of their wings. Here, we use an experimental apparatus to investigate the effects of a wing's twisting stiffness on the generated thrust force and the power required at different flapping frequencies. A flapping wing system and an experimental set-up were designed to measure the unsteady aerodynamic and inertial forces, power usage and angular speed of the flapping wing motion. A data acquisition system was set-up to record important data with the appropriate sampling frequency. The aerodynamic performance of the vehicle under hovering (i.e., no wind) conditions was investigated. The lift and thrust that were produced were measured for different flapping frequencies and for various wings with different chordwise flexibilities. The results show the manner in which the elastic deformation and inertial flapping forces affect the dynamical behavior of the wing. It is shown that the generalization of the actuator disk theory is, at most, only valid for rigid wings, and for flexible wings, the power P varies by a power of about 1.0  of the thrust T. This aerodynamic information can also be used as benchmark data for unsteady flow solvers.  相似文献   

10.
Effects of unsteady deformation of a flapping model insect wing on its aerodynamic force production are studied by solving the Navier-Stokes equations on a dynamically deforming grid.Aerodynamic forces on the flapping wing are not much affected by considerable twist,but affected by camber deformation.The effect of combined camber and twist deformation is similar to that of camber deformation.With a deformation of 6% camber and 20°twist(typical values observed for wings of many insects),lift is increased bv 10%~20%and lift-to-drag ratio by around 10%compared with the case of a rigid flat-plate wing.As a result.the deformation can increase the maximum lift coefficient of an insect.and reduce its power requirement for flight.For example,for a hovering bumblebee with dynamically deforming wings(6?mber and 20°twist),aerodynamic power required is reduced by about 16%compared with the case of rigid wings.  相似文献   

11.
Terze  Zdravko  Pandža  Viktor  Andrić  Marijan  Zlatar  Dario 《Nonlinear dynamics》2022,109(2):975-987

Insect flight research is propelled by their unmatched flight capabilities. However, complex underlying aerodynamic phenomena make computational modeling of insect-type flapping flight a challenging task, limiting our ability in understanding insect flight and producing aerial vehicles exploiting same aerodynamic phenomena. To this end, novel mid-fidelity approach to modeling insect-type flapping vehicles is proposed. The approach is computationally efficient enough to be used within optimal design and optimal control loops, while not requiring experimental data for fitting model parameters, as opposed to widely used quasi-steady aerodynamic models. The proposed algorithm is based on Helmholtz–Hodge decomposition of fluid velocity into curl-free and divergence-free parts. Curl-free flow is used to accurately model added inertia effects (in almost exact manner), while expressing system dynamics by using wing variables only, after employing symplectic reduction of the coupled wing-fluid system at zero level of vorticity (thus reducing out fluid variables in the process). To this end, all terms in the coupled body-fluid system equations of motion are taken into account, including often neglected terms related to the changing nature of the added inertia matrix (opposed to the constant nature of rigid body mass and inertia matrix). On the other hand—in order to model flapping wing system vorticity effects—divergence-free part of the flow is modeled by a wake of point vortices shed from both leading (characteristic for insect flight) and trailing wing edges. The approach is evaluated for a numerical case involving fruit fly hovering, while quasi-steady aerodynamic model is used as benchmark tool with experimentally validated parameters for the selected test case. The results indicate that the proposed approach is capable of mid-fidelity accurate calculation of aerodynamic loads on the insect-type flapping wings.

  相似文献   

12.
Insect wings are subjected to fluid, inertia and gravitational forces during flapping flight. Owing to their limited rigidity, they bent under the influence of these forces. Numerical study by Hamamoto et al. (Adv Robot 21(1–2):1–21, 2007) showed that a flexible wing is able to generate almost as much lift as a rigid wing during flapping. In this paper, we take a closer look at the relationship between wing flexibility (or stiffness) and aerodynamic force generation in flapping hovering flight. The experimental study was conducted in two stages. The first stage consisted of detailed force measurement and flow visualization of a rigid hawkmoth-like wing undergoing hovering hawkmoth flapping motion and simple harmonic flapping motion, with the aim of establishing a benchmark database for the second stage, which involved hawkmoth-like wing of different flexibility performing the same flapping motions. Hawkmoth motion was conducted at Re = 7,254 and reduced frequency of 0.26, while simple harmonic flapping motion at Re = 7,800 and 11,700, and reduced frequency of 0.25. Results show that aerodynamic force generation on the rigid wing is governed primarily by the combined effect of wing acceleration and leading edge vortex generated on the upper surface of the wing, while the remnants of the wake vortices generated from the previous stroke play only a minor role. Our results from the flexible wing study, while generally supportive of the finding by Hamamoto et al. (Adv Robot 21(1–2):1–21, 2007), also reveal the existence of a critical stiffness constant, below which lift coefficient deteriorates significantly. This finding suggests that although using flexible wing in micro air vehicle application may be beneficial in term of lightweight, too much flexibility can lead to deterioration in flapping performance in terms of aerodynamic force generation. The results further show that wings with stiffness constant above the critical value can deliver mean lift coefficient almost the same as a rigid wing when executing hawkmoth motion, but lower than the rigid wing when performing a simple harmonic motion. In all cases studied (7,800 ≤ Re ≤ 11,700), the Reynolds number does not alter the force generation significantly.  相似文献   

13.
Flight agility, resistance to gusts, capability to hover coupled with a low noise generation might have been some of the reasons why insects are among the oldest species observed in nature. Biologists and aerodynamicists focused on analyzing such flight performances for diverse purposes: understanding the essence of flapping wings aerodynamics and applying this wing concept to the development of micro-air vehicles (MAVs). In order to put into evidence the fundamentally non-linear unsteady mechanisms responsible for the amount of lift generated by a flapping wing (Dickinson et al. in Science 284:1954–1960, 1999), experimental and numerical studies were carried out on typical insect model wings and kinematics. On the other hand, in the recent context of MAVs development, it is of particular interest to study simplified non-biological flapping configurations which could lead to lift and/or efficiency enhancement. In this paper, we propose a parametrical study of a NACA0012 profile undergoing asymmetric hovering flapping motions at Reynolds 1000. On the contrary to normal hovering, which has been widely studied as being the most common configuration observed in the world of insects, asymmetric hovering is characterized by an inclined stroke plane. Besides the fact that the vertical force is hence a combination of both lift and drag (Wang in J Exp Biol 207:1137–1150, 2004), the specificity of such motions resides in the vortex dynamics which present distinct behaviours, whether the upstroke angle of attack leads to a partially attached or a strong separated flow, giving more or less importance to the wake capture phenomenon. A direct consequence of the previous remarks relies on the enhancement of aerodynamic efficiency with asymmetry. If several studies reported results based on the asymmetric flapping motion of dragonfly, only few works concentrated on parametrizing asymmetric motions (e.g. Wang in Phys Rev Lett 85:2216–2219, 2000). The present study relies on TR-PIV measurements which allow determination of the vorticity fields and provide a basis to evaluate the resulting unsteady forces through the momemtum equation approach.  相似文献   

14.
Stringent weight and size constraints on flapping-wing microair-vehicles dictate minimal actuation. Unfortunately, hovering and forward flight require different wing motions and, as such, independent actuators. Therefore, either a hovering or a forward-flight requirement should be included in the mission and design statements of a flapping-wing microair-vehicle. This work proposes a design for an actuation mechanism that would provide the required kinematics in each flight condition using only one actuator. The idea is to exploit the nonlinear dynamics of the flapping wing to induce the saturation phenomenon. One physical spring in the plunging direction is needed along with a feedback of the plunging angle into the control torque of the actuator in the back and forth flapping direction. By detuning the feedback gains away from the saturation requirement, we obtain the flapping kinematics required for hovering. In contrast, tuning the feedback gains to induce the saturation phenomenon transfers the motion into the plunging direction. Moreover, the actuating torque (in the back and forth flapping direction) would then provide a direct control over the amplitude of the plunging motion, while the amplitude of the actuated flapping motion saturates and does not change as the amplitude of the actuating torque increases.  相似文献   

15.
A computational fluid dynamics (CFD) analysis was conducted to study the unsteady aerodynamics of a virtual flying bumblebee during hovering flight. The integrated geometry of bumblebee was established to define the shape of a three‐dimensional virtual bumblebee model with beating its wings, accurately mimicking the three‐dimensional movements of wings during hovering flight. The kinematics data of wings documented from the measurement to the bumblebee in normal hovering flight aided by the high‐speed video. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow‐structure information. The CFD analysis has established an overall understanding of the viscous and unsteady flow around the virtual flying bumblebee and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. A coherent leading‐edge vortex with axial flow and the attached wingtip vortex and trailing edge vortex were detected. The leading edge vortex, wing tip vortex and trailing edge vortex, which caused by the pressure difference between the upper and the lower surface of wings. The axial flow, which include the spanwise flow and chordwise flow, is derived from the spanwise pressure gradient and chordwise pressure gradient, will stabilize the vortex and gives it a characteristic spiral conical shape. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Flapping-wing miniature air vehicles (MAVs) offer multiple performance benefits relative to fixed-wing and rotary-wing MAVs. This investigation focused on the problem of designing compliant wings for a flapping-wing MAV where only the spar configuration was varied to achieve improved performance. Because the computational tools needed for identifying the optimal spar configuration for highly compliant wing designs have yet to be developed, a new experimental methodology was developed to explore the effects of spar configuration on the wing performance. This technique optically characterized the wing deformations associated with a given spar configuration and used a customized test stand for measuring lift and thrust loads on the wings during flapping. This revealed that spar configurations achieving large and stable deformed volume during the flapping cycle provided the best combination of lift and thrust. The approach also included a sensitivity and reproducibility analysis on potential spar configurations. Results indicated that the wing shape and corresponding lift and thrust performance were very sensitive to slight changes in volume and 3-D shape associated with slight variations in the spar locations.  相似文献   

17.
柔性扑翼的气动特性研究   总被引:6,自引:0,他引:6  
以往扑翼的气动力计算研究都很少考虑扑翼的柔性,而在鸟的扑翼动作中,在外加气动力和鸟自身的扑动力作用下,扑翼的柔性变形相当大。本文在原有匀速刚性模型的基础上,提出考虑了扑翼扑动速率变化和形状变化的扑翼分析模型,使之更接近鸟翼柔性扑动真实情况。通过计算分析气动特性发现,控制适当的话,柔性变形能大大改善扑翼的气动性能。本文通过模拟鸟扑翼的柔性运动,计算了时柔性扑翼气动力以及平均升力系数和平均推力系数随着扑动角、倾斜角等参数变化的情况,从而从气动的角度解释了为什么鸟在不同的飞行阶段扑翼规律各不相同,并为柔性扑翼飞行器的设计提供了理论依据。  相似文献   

18.
This paper presents the results of experiments carried out on mechanical wings undergoing active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the aerodynamic forces generated by the wings. The experiments were repeated for a different reduced frequency, airspeed, flapping and pitching kinematics, geometric angle of attack and wing sections (one symmetric and two cambered airfoils). A specially designed mechanical flapper was used, modelled on large migrating birds. It is shown that, under pitch leading conditions, good thrust generation can be obtained at a wide range of Strouhal numbers if the pitch angle oscillation is adjusted accordingly. Consequently, high thrust was measured at both the lowest and highest tested Strouhal numbers. Furthermore, the work demonstrates that the aerodynamic forces can be sensitive to the Reynolds number, depending on the camber of the wings. Under pitch lagging conditions, where the effective angle of attack amplitude is highest, the symmetric wing was affected by the Reynolds number, generating less thrust at the lowest tested Reynolds value. In contrast, under pure flapping conditions, where the effective angle of attack amplitude was lower but still significant, it was the cambered wings that demonstrated Reynolds sensitivity.  相似文献   

19.
In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.  相似文献   

20.
A three-dimensional numerical simulation of a four-wing (two wings on each side, one on top of another) flapping micro-aerial vehicle (FMAV), known as the Delfly micro, is performed using an immersed boundary method Navier–Stokes finite volume solver at Reynolds numbers of 5500 (forward flight condition). The objective of the present investigation is to gain an insight to the aerodynamics of flapping wing biplane configuration, by making an analysis on a geometry that is simplified, yet captures the major aspects of the wing behavior. The fractional step method is used to solve the Navier–Stokes equations. Results show that in comparison to the Delfly II flapping kinematics (a similar FMAV configuration but smaller flapping stroke angles), the Delfly-Micro flapping kinematics provides more thrust while maintaining the same efficiency. The Delfly-Micro biplane configuration generates more lift than expected when the inclination angle increases, due to the formation of a uniform leading edge vortex. Estimates of the lift produced in the forward flight conditions confirm that in the current design, the MAV is able to sustain forward flight. The potential effect of wing flexibility on the aerodynamic performance in the biplane configuration context is investigated through prescribed flexibility in the simulations. Increasing the wing׳ spanwise flexibility increases thrust but increasing chordwise flexibility causes thrust to first increase and then decrease. Moreover, combining both spanwise and chordwise flexibility outperforms cases with only either spanwise or chordwise flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号