首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The axisymmetric contact problem of sliding of two solid parabolic indenters on a viscoelastic half-space with constant velocity is considered. Shear stresses modeling the adhesive component of the friction force act in the contact area. The model of the foundation material is described by an integral operator with an exponential kernel characterized by one relaxation time. The problem is solved by the boundary element method. The dependences of the contact characteristics on the sliding velocity, the normal load, and the distance between the centers of the indenters is analyzed. The results can be used to study the effect of the roughness elements modeled by two indenters on the contact characteristics and the deformation component of the friction force.  相似文献   

2.
A numerical integral scheme based on Fourier transformation approach is employed to investigate the effect of friction on subsurface stresses arising from the two-dimensional sliding contact of two multilayered elastic solids. The analysis incorporates bonded and unbonded interface boundary conditions between the coating layers. Two line contact problems are presented. The first one is the contact problem between a rigid cylinder and a two-layer half space and the second one is the indentation of a multilayered elastic half-space by a flat rigid punch. The effects of the surface coating on the contact pressure distribution and subsurface stress field are presented and discussed.  相似文献   

3.
A rigid insulated die slides at a constant sub-critical speed on a transversely isotropic half-space in the presence of friction. In a two-dimensional analysis of the dynamic steady-state, the coupled equations of thermoelasticity are invoked. All elements of the Coulomb friction model are strictly enforced, thus giving rise to auxiliary conditions, including two unilateral constraints.Robust asymptotic forms of an exact solution to a related problem with unmixed boundary conditions lead to analytical solutions for the sliding indentation problem. The solution expressions, abetted by calculations for zinc, show the role of frictional heating on the half-space surface. The effects of friction and sliding speed on contact zone size and location and average contact zone temperature are also studied.The analysis is aided by factoring procedures that simplify the complicated forms that arise in anisotropic elasticity. A scheme that renders expressions for roots of certain irrational functions analytic to within a single quadrature also plays a role.  相似文献   

4.
The article deals with constant-speed sliding of a smooth indenter along the boundary of a viscoelastic layer coupled with a rigid half-space. The problem is investigated in a quasistatic statement by constructing a solution for the case of a load sliding, distributed inside of a rectangular element, which allows using the boundary element method and an iterative procedure. The effect of sliding velocity and layer thickness on the contact pressure distribution and the deformation component of the frictional force is studied.  相似文献   

5.
The three-dimensional, rapid sliding indentation of a deformable half-space by a rigid indentor of a flat elliptical base is treated in this paper. The response of the material that fills the half-space is assumed to be governed by coupled thermoelasticity. The indentor translates without friction on the half-space surface at a constant sub-Rayleigh speed and the problem is treated as a steady-state one. An exact solution is obtained that is based on a Green’s function approach, integral equations, and Galin’s theorem. A closed-form expression for the distributed contact pressure under the elliptical base of the indentor is derived. Representative numerical results are given illustrating the effects of the indentor velocity, indentor geometry, and parameters of the thermoelastic solid on the contact displacement. Since there is an analogy between the steady-state theories of thermoelasticity and poroelasticity, the present results carry over to the latter case directly.  相似文献   

6.
In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal shape, the later being of any orientation relatively to the contact surface. The model presented here is three dimensional and based on semi-analytical methods. In order to take into account the viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal dimensions. The frictionless rolling of the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is applied at each step of the temporal discretization to account for the effect of the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to reduce the computation cost. The model is validated by a finite element model of a rigid sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison with reference solutions from the literature. A parametric analysis of the effect of elastic properties and geometrical features of the inhomogeneity is performed. Transient and steady-state solutions are obtained. Numerical results about the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are presented, with or without heterogeneous inclusion.  相似文献   

7.
We examine the reflection and transmission phenomena of quasi-longitudinal plane(QP) waves in an AlN-ZnO laminated composite structure. The structure is designed under the influence of the initial stresses in which one carrier piezoelectric semiconductor(PSC) half-space is in welded contact with another PSC half-space.The secular equations in the transversely isotropic PSC material are derived from the general dynamic equation, taking the initial stresses into consideration. It is shown that the incident quasi-longitudinal wave(QP-mode) at the interface generates four types of reflected and transmitted waves, namely, QP wave, quasi-transverse(QSV) wave,electric-acoustic(EA) wave, and carrier plane(CP) wave. The algebraic equations are obtained by imposing the boundary conditions on the common interface of the laminated structure. Reflection and transmission coefficients of waves are obtained by implementing Cramer's rule. Profound impacts of the initial stresses and exterior electric biasing field on the reflection and transmission coefficients of waves are investigated and presented graphically.  相似文献   

8.
波数-频率域内地基土表面位移Green函数的理论分析   总被引:2,自引:0,他引:2  
建立了柱面坐标系下分层弹性半空间地基土模型。利用钟阳刚度矩阵法和Haskell-Thomson传递矩阵法推导出所有分层土体之间的振动传递关系;根据Helmholtz定理将土体的位移向量分解成势函数的形式,推导出弹性半空间表面应力与位移之间的关系;再将分层土体和半空间地基土通过位移与应力之间的关系进行耦合,得到分层弹性半空间地基土模型表面位移与应力之间的关系。结合单位脉冲荷载作用下地基土表面的边界条件,推导出波数-频率域内地基土表面位移Green函数的解析解,用Matlab程序语言对理论进行实现并通过算例对地基土表面位移Green函数的特征进行了分析和总结。  相似文献   

9.
The two-dimensional thermoelastic sliding frictional contact of functionally graded material (FGM) coated half-plane under the plane strain deformation is investigated in this paper. A rigid punch is sliding over the surface of the FGM coating with a constant velocity. Frictional heating, with its value proportional to contact pressure, friction coefficient and sliding velocity, is generated at the interface between the punch and the FGM coating. The material properties of the coating vary exponentially along the thickness direction. In order to solve the heat conduction equation analytically, the homogeneous multi-layered model is adopted for treating the graded thermal diffusivity coefficient with other thermomechanical properties being kept as the given exponential forms. The transfer matrix method and Fourier integral transform technique are employed to convert the problem into a Cauchy singular integral equation which is then solved numerically to obtain the unknown contact pressure and the in-plane component of the surface stresses. The effects of the gradient index, Peclet number and friction coefficient on the thermoelastic contact characteristics are discussed in detail. Numerical results show that the distribution of the contact stress can be altered and therefore the thermoelastic contact damage can be modified by adjusting the gradient index, Peclet number and friction coefficient.  相似文献   

10.
The problem of reflection and transmission due to longitudinal and transverse waves incident obliquely at a plane interface between uniform elastic solid half-space and fractional order thermoelastic solid half-space has been studied. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence and frequency of incident wave and are influenced by the fractional order thermoelastic properties of media. The expressions of amplitude ratios and energy ratios have been computed numerically for a particular model. The variation of amplitude and energy ratios with angle of incidence is shown graphically. The conservation of energy at the interface is verified.  相似文献   

11.
A method is proposed for calculating the stress state and fatigue damage accumulation in a two-layer elastic half-space with a system of defects between the layers under the action of normal and tangential distributed forces. The problem is solved by the boundary element method and the double Fourier transform. The effects of the surface layer thickness, degree of imperfection of the intermediate defective layer, and interlayer friction on the distribution of the maximal tangential stresses are analyzed. An example of studying the damage accumulation kinetics taking into account the change in the layer thickness due to surface fracture.  相似文献   

12.
The first boundary value problem of nonlinear theory of steady-state creep with powerlaw relationship between the stresses and the strain rates is considered for a half-space under conditions of antiplane (out-of-plane) deformation when tangential distributed forces are given on the half-space boundary. By using the introduced harmonic pseudostress function, we reduce solving this problem to solving a nonlinear singular integral equation admitting an exact solution.  相似文献   

13.
An analytical solution to the axisymmetric problem on the action of a distributed load on an isotropic half-space when the load is given by a function dependent on the radial coordinate is obtained. The surface of the half-space is elastically fixed outside the circular domain of load application, the shear stresses are absent along the entire boundary, and the stresses vanish at infinity. At the boundary and inside the elastic half-space, the solutions are represented by the formulas for the stress tensor components and for the displacement vector components.  相似文献   

14.
15.
This article presents a method to compute the response of a viscoelastic layered half-space to a moving load when interlayer slip is considered. The Navier equations of equilibrium are solved for each layer in the frequency domain. The solution in the spatial coordinate system is subsequently obtained by means of Fast Fourier Transform and quadrature rules applied to integrable singularities. Following the global solution technique, the developed method compiles all the interface and the boundary conditions within a global matrix and it solves a unique linear system per couple of wave numbers. This method proves to be effective and is validated in an elastic case by comparison with the ALIZE-LCPC software that implements the Burmister axisymmetric solution. The influence of the interface sliding condition on the response of a layered viscoelastic medium is studied through an application to pavement structures. In this application, the effect of the load speed on vertical and horizontal profiles of the longitudinal strain and the normal stress is analyzed. It is shown, inter alia, that the maximum extension in the medium is not systematically observed at the location of an interface and that, as expected, low speeds and interlayer slip are more damaging to the structure when either a strain or a stress criterion is considered.  相似文献   

16.
The motion and state of soil at the interface with a penetrating rigid projectile is studied by numerical solution of the problem of a cylindrical projectile which expands and at the same time moves translationally along its axis in soil. The soil behavior is described using the model of a compressible elastoplastic medium with transition to a plastic state depending on the pressure in it. It is shown that a thin layer of soil at the interface with the projectile nose should be set in motion and move together with the projectile without sliding. An analysis is performed of the validity of using the dry friction law to determine the shear stresses on the projectile surface during penetration. The heat release in the soil layer at the interface due to internal friction and its possible effect on the penetration are estimated. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 6, pp. 116–127, November–December, 2005.  相似文献   

17.
The contact problem for the impression of spherical indenter into a non-homogeneous (both layered and functionally graded) elastic half-space is considered. Analytical methods for solving this problem have been developed. It is assumed that the Lame coefficients vary arbitrarily with the half-space depth. The problem is reduced to dual integral equations. The developed methods make it possible to find the analytical asymptotically exact problem solution, suitable for a PC. The influence of the Lame coefficients variation upon the contact stresses and size of the contact zone with different radius of indenter as well as values of the impressing forces are studied. The effect of the non-homogeneity is examined. The developed method allows to construct analytical solutions with presupposed accuracy and gives the opportunity to do multiparametric and qualitative investigations of the problem with minimal computation time expenditure.  相似文献   

18.
The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.  相似文献   

19.
The stability of dynamic anti-plane sliding at an interface between an elastic layer and an elastic half-space with dissimilar elastic properties is studied. Friction at the interface is assumed to follow a rate- and state-dependent law, with a positive instantaneous dependence on slip velocity and a rate weakening behavior in the steady state. The perturbations at the interface are of the form exp(ikx 1+pt), where k is the wavenumber, x 1 is the coordinate along the interface, p is the time response to the perturbation and t is time. A key feature of the problem is that interfacial waves both in freely slipping contact as well as in bonded contact exist for the problem. Attention is focused on the role of the interfacial waves on slip stability. Instabilities are plotted in the $\operatorname{Re} (pL/V_{o})$ versus $\operatorname{Im} (p/|k|c_{s})$ plane, where L is a length scale in the friction law, V o is the unperturbed slip velocity and c s is the shear wave speed of the layer. Stability of both rapid and slow slip is studied. The results show one mechanism by which instabilities occur is the destabilization by friction of the interfacial waves in freely slipping contact/bonded contact. This occurs even in slow sliding, thus confirming that the quasi-static approximation is not valid for slow sliding. The effect of material properties and layer thickness on the stability results is studied.  相似文献   

20.
The impact of a rigid sphere on a homogeneous, isotropic elastic half-space in the absence of friction and adhesion is considered. The influence of the superseismic stage immediately following the moment of first contact upon the impact process is investigated in the frame of the Hertzian impact theory. The first order asymptotic approximation for the contact force in a three-dimensional dynamic contact problem with the slowly moving contact zone boundary is obtained and the corresponding asymptotic model of impact is developed. The motion of the indenter as it indents and rebounds from the elastic medium is analytically described. Explicit formulas are derived for the peak indentation depth, contact time, and rebound velocity as functions of the initial impact velocity, indenter mass, and characteristics of the elastic half-space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号