首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of the compound K2[(UO2)4(O)2(OH)2(C2O4)(CH3COO)2(H2O)2]·2H2O (I) are synthesized, and their structure is investigated using X-ray diffraction. Crystals of compound I belong to the triclinic system with the unit cell parameters a = 7.6777(6) ?, b = 7.9149(7) ?, c = 10.8729(9) ?, α = 72.379(2)°, β = 86.430(3)°, γ = 87.635(2)°, V = 628.33(9) ?3, space group P , Z = 1, and R 1 = 0.0323. The main structural units of the crystals are [(UO2)4(O)2(OH)2(C2O4)(CH3COO)2(H2O)2]2− chains, which belong to the crystal-chemical group A 4 M 23 M 22 K 02 B 201 M 21 (A = UO22+, M 3 = O2−, M 2 = OH, K 02 = C2O42−, B 01 = CH3COO, M 1 = H2O) of the uranyl complexes. The chains are formed by linking the centrosymmetric tetramers of the composition (UO2)4(O)2(OH)2(CH3COO)2(H2O)2 via tetradentate bridging oxalate ions. The uranium-containing groups are joined into a three-dimensional framework through the electrostatic interaction with potassium cations and a system of hydrogen bonds, which are formed with the participation of atoms involved in the composition of the water molecules, hydroxide ions, and uranyl ions. Original Russian Text ? L.B. Serezhkina, A.V. Vologzhanina, N.A. Neklyudova, V.N. Serezhkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 3, pp. 483–487.  相似文献   

2.
[NH3(CH2)3NH3]2[Ni(HP2O7)2(H2O)2] 4H2O (NiDAP) is a new diphosphate of transition metallic and organic cations obtained from a mixture of H4P2O7, 2NiCO3 Ni(OH)2 4H2O and NH2(CH2)3NH2 in a 1:1/6:1 molar ratio. This mixed organo-mineral compound crystallizes in the triclinic system, P¯, with the unit cell dimensions: a = 7.3678(3)~Å, b = 7.8018(5)Å, c = 11.1958(7)Å, = 76.914(4), = 81.052(4), = 85.46(1), V = 618.57(6)Å3 and Z = 1. The crystal structure of NiDAP consists of a complex anion, [Ni(HP2O7)2(H2O)2]4– and a diammoniumpropane cation. The complex anion is built up from two neutral water molecules (OW1) and two diphosphosphoric anions coordinated to Ni(II) in a bidentate chelating manner. (OW1) molecules link anionic complexes, [Ni(HP2O7)2(H2O)2]4– to create a thick bidimensional layers parallel to the (a, b) plane. These layers are interconnected in three dimensions through hydrogen bonds established between organic cations, the remaining water molecules OW2, OW3, and some external oxygen atoms of the anionic complex arrays. NiDAP was also characterized by IR spectroscopy, TG-DTA, and DSC analyses.  相似文献   

3.
Single crystals of the compound K8[(UO2)2(C2O4)2(SeO4)4] · 2H2O (I) are synthesized, and their structure is investigated using X-ray diffraction. Compound I crystallizes in the monoclinic system with the unit cell parameters a = 14.9290(4) ?, b = 7.2800(2) ?, c = 15.3165(4) ?, β = 109.188(1)°, V = 1572.17(7) ?3, space group P21/n, Z = 2, and R = 0.0297. The uranium-containing structural units of crystals I are dimers of the composition [(UO 2)2(C2O4)2(SeO4)4]8−, which belong to the crystal-chemical group AB 01 B 2 M 1 (A = UO22+, B 01 = C2O42−, B 2 = SeO42−, M 1 = SeO42−) of the uranyl complexes. The [(UO2)2(C2O4)2(SeO4)4]8− dimers are joined into a three-dimensional framework through electrostatic interactions with the outer-sphere potassium cations. Original Russian Text ? L.B. Serezhkina, E.V. Peresypkina, A.V. Virovets, A.G. Verevkin, D.V. Pushkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 1, pp. 68–71.  相似文献   

4.
Three Sr2+ compounds with the Edta 4− and H2 Edta 2− ligands—Sr2(Edta) · 5H2O (I), Sr2(H2 Edta)(HCO3)2 · 4H2O (II), and Sr2(H2 Edta)Cl2 · 5H2O (III)—are synthesized, and their crystal structures are studied. In I, the Sr(1) atom is coordinated by the hexadentate Edta 4− ligand following the 2N + 4O pattern and by two O atoms of the neighboring ligands, which affords the formation of zigzag chains. The Sr(2) atom forms bonds with O atoms of five water molecules and attaches itself to a chain via bonds with three O atoms of the Edta 4− ligands. The Sr(1)-O and Sr(2)-O bond lengths fall in the ranges 2.520(2)–2.656(3) and 2.527(3)–2.683(2) ?, respectively. The Sr(1)-N bonds are 2.702(3) and 2.743(3) ? long. In II and III, the H2 Edta 2− anions have a centrosymmetric structure with the trans configuration of the planar ethylenediamine fragment. The N atoms are blocked by acid protons. In II, the environment of the Sr atom is formed by six O atoms of three H2 Edta ligands, two O atoms of water molecules, and an O atom of the bicarbonate ion, which is disordered over two positions. In III, the environment of the Sr atom includes six O atoms of four H2 Edta 2− ligands and three O atoms of water molecules. The coordination number of the Sr atoms is equal to 8 + 1. In II and III, the main bonds fall in the ranges 2.534(3)–2.732(2) and 2.482(2)–2.746(3) ?, whereas the ninth bond is elongated to 2.937(3) and 3.055(3) ?, respectively. In II, all the structural elements are linked into wavy layers. The O-H…O interactions contribute to the stabilization of the layer and link neighboring layers. In III, hydrated Sr2+ cations and H2 Edta anions form a three-dimensional [Sr2(H2 Edta)(H2O)3] n 2n+ framework. The Cl anions are fixed in channels of the framework by hydrogen bonds with four water molecules. In II and III, the N-H groups form four-center N-H…O3 hydrogen bonds, which include one intermolecular and two intramolecular components. PACS numbers: 61.66.Hq Original Russian Text ? I.N. Polyakova, A.L. Poznyak, V.S. Sergienko, 2009, published in Kristallografiya, 2009, Vol. 54, No. 2, pp. 262–267.  相似文献   

5.
Single crystals of the compound {NH2(C2H5)2}2[(UO2)2C2O4(CH3COO)4] · 2H2O (I) are synthesized, and their structure is investigated using X-ray diffraction. Compound I crystallizes in the monoclinic system with the unit cell parameters a = 9.210(2) ?, b = 14.321(3) ?, c = 12.659(3) ?, β = 105.465(13)°, V = 1609.2(6) ?3, space group P21/c, Z = 2, and R = 0.0198. The structural units of crystals I are binuclear groups of the composition [(UO2)2C2O4(CH3COO)4]2− with an island structure, which belong to the crystal-chemical group A 2 K 02 B 401 (A = UO22+, K 02 = C2O42−, B 01 = CH3COO) of the uranyl complexes, diethylammonium cations, and water molecules. The uranium-containing groups are joined into a three-dimensional framework through electrostatic interactions with diethylammonium cations and a system of hydrogen bonds, which are formed with the participation of the atoms involved in the composition of the water molecules, oxalate ions, acetate ions, and diethylammonium cations. Original Russian Text ? L.B. Serezhkina, A.V. Vologzhanina, N.A. Neklyudova, V.N. Serezhkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 1, pp. 65–67.  相似文献   

6.
Single crystals of the compounds (C3N6 H7)4(CN3H6)2[UO2(CrO4)4] · 4H2O (I) and (H3O)6[UO2(CrO4)4] (II) are synthesized, and their structures are investigated using X-ray diffraction. Compound I crystallizes in the triclinic system with the unit cell parameters a = 6.3951(8) ?, b = 10.8187(16) ?, c = 16.9709(18) ?, α = 93.674(4)°, β = 97.127(4)°, γ = 92.020(4)°, space group, P Z = 1, V = 1161.6(3) ?3, and R = 0.0470. Crystals of compound II belong to the monoclinic system with the unit cell parameters a = 14.3158(4) ?, b = 11.7477(3) ?, c = 13.1351(4) ?, β= 105.836(1)°, space group C2/c, Z = 4, V = 2125.2(1) ?3, and R = 0.0213. The uranium-containing structural units of crystals I and II are mononuclear anionic complexes of the composition [UO2(CrO4)4]6− with an island structure, which belong to the crystal-chemical group Am 14 (A = UO2+2, M 1 = CrO2−4) of the uranyl complexes. The [UO2(CrO4)4]6− anionic complexes are joined into a three-dimensional framework through the electrostatic interactions with outer-sphere cations and a system of hydrogen bonds. Original Russian Text ? L.B. Serezhkina, E.V. Peresypkina, A.V. Virovets, A.G. Verevkin, D.V. Pushkin, 2009, published in Kristallografiya, 2009, Vol. 54, No. 2, pp. 284–290.  相似文献   

7.
Abstract  Hydrated zinc perchlorate reacted with sodium azide and 1-(1,10-phenanthrolin-2-yl)-2-pyridone (L) in methanol solution and resulted in the formation of a new binuclear complex: [Zn2(μ-N3)2(N3)2(L)2]. The complex has been characterized by elemental analysis and IR spectrum, and its crystal structure determined by X-ray crystallography and the complex crystallizes in the monoclinic system with space group P21/c and a = 11.409(2), b = 8.0733(15), c = 18.163(3) Ǻ, β = 99.095(3)°. In the complex two azide anions act as bridge ligand and another two azide anion and two 1-(1,10-phenanthrolin-2-yl)-2-pyridone function as terminal ligands, and Zn(II) ion lies in a distorted triangle bipyramid geometry. Index Abstract  The title binuclear Zn(II) complex was synthesized by zinc perchlorate, sodium azide and 1-(1,10-phenanthrolin-2-yl)-2-pyridone and its crystal structure determined. Single crystal X-ray diffraction analysis reveals that azide anion function as both bridge ligand and terminal ligand, and 1-(1,10-phenanthrolin-2-yl)-2-pyridone only acts as a terminal ligand.   相似文献   

8.

Abstract  

The crystal structures of two zinc(II) 4-chloro- and 5-chlorosalicylate complexes, [Zn(4-ClC6H3-2-(OH)COO)2(H2O)4]·2tph·(H2O)2 (I) and [Zn(5-ClC6H3-2-(OH)COO)2(ina)2(H2O)] (II), where tph is theophylline and ina is isonicotinamide, have been determined using X-ray diffraction methods. Crystals of both (I) and (II) are triclinic, space group P-1, with Z = 1 in a cell with a = 7.2220(3), b = 8.59700(10), c = 16.0210(5) ?, α = 75.990(2), β = 83.959(2), γ = 68.455(2)°, V = 897.54(5) ?3 (I) and with Z = 2 in a cell with a = 11.4148(11), b = 11.5327(10), c = 12.0685(13) ?, α = 63.458(6), β = 87.547(8), γ = 89.387(7)°, V = 1419.9(2) ?3 (II). The coordination environment of the zinc(II) atom of compound (I) consists of two unidentate carboxylate oxygen atoms and four oxygen atoms of aqua ligands, forming a distorted octahedral configuration. Two theophylline molecules and the remaining water molecules are bound only by hydrogen bonds. The Zn atom of compound (II) is pentacoordinated with two unidentate carboxylate oxygen atoms, two pyridine nitrogen atoms of isonicotinamide ligands, and the oxygen atom of the aqua ligand, forming a distorted configuration between square pyramid and trigonal bipyramid. In both complexes intramolecular O–H···O hydrogen-bonding interactions are present. In the crystal structures, molecules are linked by intermolecular O–H···O and N–H···O hydrogen bonds. The structures are analyzed and compared to the similar Zn(II) complexes, with the chromophores ZnO6 and ZnO3N2.  相似文献   

9.
Abstract  Treatment of [Re2(CO)8(MeCN)2] with excess 1-vinylimidazole in refluxing benzene gives three new compounds [Re2(CO)9{η 1-NC3H3N(CH=CH2)}] (1), [Re2(CO)8{η 1-NC3H3N(CH=CH2)}2] (2) and [ReCl2(CO)2{η 1-NC3H3N(CH=CH2)}2] (3) in 11, 32 and 2% yields, respectively. The solid-state structures of complexes 2 and 3 have been determined by single crystal X-ray diffraction studies. Compound 2 crystallizes in the monoclinic space group C2/c, with lattice parameters a = 13.8378(5) ?, b = 11.8909(5) ?, c = 14.4591(6) ?, β = 116.6470(10)°, Z = 4 and V = 2131.99(15) ?3. Compound 3 crystallizes in the monoclinic space group C2/c, with lattice parameters a = 10.1028(3) ?, b = 13.5640(5) ?, c = 12.5398(4) ?, β = 109.637(2)°, Z = 4 and V = 1618.4(9) ?3. The disubstituted dinuclear compound 2 contains two 1-vinylimidazole ligands coordinated through the imino nitrogen atoms at the equatorial sites, whereas the mononuclear compound 3 contains two carbonyl ligands, two N coordinated η 1-1-vinylimidazole ligands and two terminal Cl ligands. Graphical Abstract  Two dinuclear complesxes [Re2(CO)9{η 1-NC3H3N(CH=CH2)}] (1) and [Re2(CO)8{η 1-NC3H3N(CH=CH2)}2] (2) and the mononuclear [ReCl2(CO)2{η 1-NC3H3N(CH=CH2)}2] (3) were obtained from the reaction of [Re2(CO)8(MeCN)2] with excess 1-vinylimidazole at 80 °C. The X-ray structrures of 2 and 3 are described.   相似文献   

10.

Abstract  

The binuclear zinc complex bis(2-bromobenzoato-O)-bis(μ 2 -2-bromobenzoato-O,O′)-bis(phenazone-O)-dizinc(II) (I) and the mononuclear dihydrate bis(2-bromobenzoato-O)-bis(thiourea-S)-zinc(II) (II) have been synthesized and characterized by means of elemental analysis and spectroscopic methods (IR, 1H and 13C NMR, EDS). The solid state structures of both compounds were determined by single-crystal X-ray diffractometry. Compound [Zn(2-BrC6H4COO)2(phen)]2 (phen—phenazone) (I) crystallized as a dimeric compound with a triclinic lattice (space group P − 1), where both zinc atoms, interconnected by two carboxylate groups, possess a distorted tetrahedral coordination environment. The crystallographic data of complex I: a = 9.9410(3) ?, b = 10.7309(3) ?, c = 12.9237(4) ?, α = 93.6004(17)°, β = 92.5898(11)°, γ = 116.2192(16)°, V = 1230.26(6) ?3, Z = 1. Complex [Zn(2-BrC6H4COO)2(tu)2]·2H2O (tu—thiourea) (II) crystallized with an orthorhombic lattice (space group Aba2) as a monomeric compound, where the coordination environment of the central zinc atom is a distorted tetrahedron. The crystallographic data of complex II are: a = 9.8595(3) ?, b = 19.7052(5) ?, c = 12.5908(3) ?, V = 2446.18(11) ?3, Z = 4. The modes of the carboxylate binding were assigned from the IR spectra using the magnitude of the separation between the carboxylate stretches (Δ), which correlated well with the crystal structures. The computed theoretical IR spectrum agreed well with the experimental data.  相似文献   

11.

Abstract  

Two transition-metal compounds derived from 2,4-dinitroimidazole, {[Ni(DNI)2(H2O)3][Ni(DNI)2(H2O)4]}·6H2O, 1, and Pb(DNI)2(H2O)4, 2, were characterized by elemental analysis, FT-IR, TG-DSC and X-ray single-crystal diffraction analysis. Crystal data for 1: monoclinic, space group C2/c, a = 26.826(3), b = 7.7199(10), c = 18.579(2) ?, β = 111.241(2)° and Z = 4; 2: monoclinic, space group C2/c, a = 6.5347(6), b = 17.1727(17), c = 14.1011(14) ?, β = 97.7248(10) and Z = 4. Compound 1 contains two isolated nickel centers in its structure, one being six-coordinate and another five-coordinate. The structure of 2 contains a lead (II) center surrounded by two chelating DNI ligands and four water molecules in distorted square-antiprism geometry. The abundant hydrogen bonds in two compounds link the molecules into three-dimensional network and stabilize the molecules. The TG-DSC analysis reveals that the first step is the loss of water molecules and the final residue is the corresponding metal oxides and carbon.  相似文献   

12.

Abstract  

The novel dimeric manganese-substituted polyoxotungstate Na10[(α-B-ZnW9O34)2W2Mn2(H2O)2](OH)2·34H2O (1) has been designed and synthesized from the hydrothermal reaction of Na2WO4·2H2O, MnCl2·4H2O, and ZnCl2 in a Teflon-lined stainless steel autoclave at 140°. X-ray diffraction analysis results reveal that compound (1) crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.0901(3) ?, b = 17.8242(4) ?, c = 21.2401(5) ?, β = 93.6380(10)°, Z = 1, V = 4945.8(2) ?3, F(000) = 5244, Dc = 3.974 g/cm−3, μ(Mo-Kα) = 2.4037 cm−1, λ(Mo-Kα) = 0.71073 ?. The structure was refined to R = 0.0631 and wR = 0.1532. The polyoxoanion of [(α-B-ZnW9O34)2W2Mn2(H2O)2]8− consist of two Keggin lacunary α-B-ZnW9O34 12− moieties linked via a rhomblike W2Mn2O16 group leading to a sandwich-type structure.  相似文献   

13.

Abstract  

The tetraiodotetrasilane (tBu3Si)SiI2SiI2(SitBu3) can be prepared from precursor (tBu3Si)SiH2SiH2(SitBu3). When (tBu3Si)SiH2SiH2(SitBu3) was treated with an excess of iodine at 120 °C, (tBu3Si)SiI2SiI2(SitBu3) was formed. X-ray quality crystals of (tBu3Si)SiI2SiI2(SitBu3) were grown from benzene at ambient temperature. The tetraiodotetrasilane (tBu3Si)SiI2SiI2(SitBu3) crystallizes in the monoclinic space group C2/c, a = 10.0110(10) ?, b = 13.9130(10) ?, c = 25.422(2) ?, β = 99.072(4)°, V = 3496.6(5) ?3, Z = 4, d calcd = 1.829 g cm3; R 1 = 0.0844, wR 2 = 0.1854 for 3,017 reflections with I > 2σ(I). X-ray-crystallographic data show that the bromo and iodo derivatives (tBu3Si)SiX2SiX2(SitBu3) (X = Br, I) are isomorphous. The solid-state structure of (tBu3Si)SiI2SiI2(SitBu3) as well as those of (tBu3Si)SiX2SiX2(SitBu3) (X = Cl, Br) reveals a staggered conformation which adopts a trans-orientation of the supersilyl substituent. Unequal dihedral angles as found in (tBu3Si)SiX2SiX2(SitBu3) (X = Cl, Br, I) indicate that these compounds are sterically overcrowded.  相似文献   

14.
Abstract  Treatment of Mn2(CO)10 with 2-thiazoline-2-thiol in the presence of Me3NO at room temperature afforded the dimanganese complexes [Mn2(CO)7(μ-NS2C3H4)2] (1) and [Mn2(CO)6(μ-NS2C3H4)2] (2) in 51 and 34% yields, respectively. Compound 1 was quantitatively converted into 2 when reacted with one equiv of Me3NO. Reaction of 1 with triphenylphosphine at room temperature furnished the mononuclear complex [Mn(CO)3(PPh3)(κ 2-NS2C3H4)] (3) in 66% yield. All three new complexes have been characterized by elemental analyzes and spectroscopic data together with single crystal X-ray diffraction studies for 1 and 3. Compound 1 crystallizes in the orthorhombic space group Pbca with a = 12.4147(2), b = 16.2416(3), c = 19.0841(4) ?, β = 90°, Z = 8 and V = 3848.01(12) ?3 and 3 crystallizes in the monoclinic space group P 21/n with a = 10.41730(10), b = 14.7710(2), c = 14.9209(2) ?, β = 91.1760(10)°, Z = 4 and V = 2295.45(5) ?3. Graphical Abstract  Two new dimanganese complexes [Mn2(CO)7(μ-NS2C3H4)2] (1) and [Mn2(CO)6(μ-NS2C3H4)2] (2) were formed when [Mn2(CO)10] was treated with 2-thiazoline-2-thiol in the presence of Me3NO. Compound 2 reacts with PPh3 to give the monomeric complex [Mn(CO)3(PPh3 )(κ 2-NS2C3H4)]. The structures of 1 and 3 were established by crystallography. Shishir Ghosh, Faruque Ahmed, Rafique Al-Mamun, Daniel T. Haworth, Sergey V. Lindeman, Tasneem A. Siddiquee, Dennis W. Bennett, Shariff E. Kabir Investigations of 2-thiazoline-2-thiol as a ligand: Synthesis and X-ray structures of [Mn2(CO)7(μ-NS2C3H4)2] and [Mn(CO)3 (PPh3)(κ 2-NS2C3H4)].   相似文献   

15.
Abstract  The reaction of the dithioether ligand, 2,3-bis(pyrimidine-2-thiomethyl)quinoxaline (L) with AgNO3, leads to the formation of a novel complex {[Ag5(L)2(NO3)4](NO3)(CHCl3)2}n 1, which has been characterized by single-crystal X-ray diffraction analysis: monoclinic, space group C2/c, with a = 34.741(7), b = 9.930(2), c = 17.004(4) ?, β = 106.497(6)° and V = 5625(2) ?3.Complex 1 consists of 2D {[Ag5(L)2(NO3)4]+}n cations, uncoordinated anions and CHCl3 solvent molecules. In 1, there exist three crystallographic independent AgI centers, which adopt different coordination geometries. There exist ππ stacking interactions in the complex and these weak interactions further stabilize the crystal structure in the solid state. The coordination feature of the ligand has been investigated by DFT calculations. Index Abstract  Synthesis and Structure of a Silver(I) Complex {[Ag5(L)2(NO3)4](NO3)(CHCl3)2}n [L = 2,3-bis(pyrimidine-2-thiomethyl)quinoxaline] Chao-Yan Zhang, Qian Gao, Ya-Bo Xie*, and Jian-Bo Feng The crystal structure of complex {[Ag5(L)2(NO3)4](NO3)(CHCl3)2}n (L = 2,3-bis(pyrimidine-2-thiomethyl)quinoxaline) consists of 2D {[Ag5(L)2(NO3)4]+}n cations, uncoordinated anions and CHCl3 solvent molecules. There exist three crystallographic independent AgI centers, which adopt different coordination geometries. The coordination feature of the ligand has been investigated by DFT calculations.   相似文献   

16.

Abstract  

The title compound was prepared by reacting mercury(II) cyanide and tetramethylthiourea (Tmtu) in the molar ratio of 1:1.75. It was characterized by IR and NMR (1H and 13C) spectroscopy, and X-ray crystallography. The appearance of a band around 2,200 cm−1 in IR and a resonance around 145 ppm in 13C NMR indicated the binding of cyanide to mercury(II). The crystal structure of the title complex, [{(tetramethylthiourea)2Hg(CN)2}2·Hg(CN)2] (1) consists of two independent [(Tmtu)2Hg(CN)2] moieties bridged by a Hg(CN)2 unit. The mercury atom in [(Tmtu)2Hg(CN)2] unit is coordinated to two thione sulfur atoms of Tmtu and to two cyanide carbon atoms in a distorted tetrahedral mode.  相似文献   

17.

Abstract  

Distorted octahedral coordination geometries based on a N2S4 donor set are found in each of the molecular structures of the title complexes Mn(S2COCH2CH3)2 (1,10-phenanthroline) (1) and Mn(S2COCH2CH3)2 (2,2′-bipyridyl) (2). Analyses of the geometric parameters indicate that the five-membered ring in (1) has significantly more aromatic character than the analogous ring in (2). In terms of coordination of the xanthate ligands, one ligand in (1) is considerably more aromatic than the remaining ligands. This latter feature allows for the formation of C−H···π (S2C) interactions leading to a supramolecular chain in (1). By contrast, in (2), the crystal packing is dominated by C−H···O contacts, which lead to a supramolecular chain with 41 symmetry, which combine with C−H···S contacts to consolidate the three-dimensional architecture. Unit cell data for (1): hexagonal, space group R ˉ3, a = 35.228(5) and c = 9.0086(13) ?; and for (2): tetragonal, space group I41/a, a = 31.120(7) and c = 8.306(2) ?.  相似文献   

18.

Abstract  

The synthesis and crystal structure of the dinuclear manganese (II) compound [Mn2(bpy)4(2-ClC6H4COO)2](ClO4)2·2EtOH is described. The complex crystallizes in the monoclinic system, space group P21/n with a = 12.2067(18), b = 17.335(3), c = 13.706(3) ? and β = 92.606(8)°. In this structure, two manganese ions are bridged by two 2-chlorobenzoate ligands in a synanti mode. The hexa-coordination of each manganese is completed by two 2,2′-bipyridine ligands. Two perchlorate anions and two molecules of ethanol complete the packing. In order to check the magnetic properties previously reported from a powder sample, new magnetic studies have been carried out from a crystal sample, obtaining J = −1.79 cm−1 and g = 2.00 (H = −JS 1 ·S 2 ).  相似文献   

19.
Compounds K2[UO2(C3H2O4)2] · H2O (I) and Rb2[UO2(C3H2O4)2] · H2O (II) are synthesized and their crystal structures are determined by X-ray diffraction. The compounds crystallize in the monoclinic crystal system; for I, a = 7.1700(2) ?, b =12.3061(3) ?, c = 14.3080(4) ?, β = 95.831(2)°, space group P21/n, Z = 4, and R = 0.0275; for II, a = 7.1197(2) ?, b = 12.6433(4) ?, c = 14.6729(6) ?, β = 96.353(2)°, space group P21/n, Z = 4, and R = 0.0328. It is found that I and II are isostructural. The main structural units of the crystals are the [UO2(C3H2O4)2]2− chains, which belong to the AT 11 B 01 (A = UO22+, T 11, and B 01 = C3H2O42−) crystal chemical group of uranyl complexes. The chains and alkali metal ions R (R = K or Rb) are connected by electrostatic interactions and hydrogen bonds. Some specific structural features of [UO2(C3H2O4)2]2− complex groups are discussed.  相似文献   

20.
Abstract  Thermolysis of the diruthenium compound [(η6-cymene)RuCl2]2 (1) with ClRe(CO)5 (2) leads to the formation of the new confacial bioctahedral compound (η6-cymene)Ru(μ-Cl)3Re(CO)3 (3) in good yields; the same product has also been isolated when a mixture of 1 and 2 is irradiated with near UV–vis light for an extended period of time. Heating 1 and ClMn(CO)5 (4) does not furnish the corresponding manganese analogue of 3 but rather the trioctahedral halide-bridged product [fac-ClRu(CO)3]2(μ-Cl)4Mn(H2O)2 (5). 3 and 5 have been fully characterized in solution and their molecular structures established by X-ray crystallography. Graphical Abstract  Thermolysis of [(η6-cymene)RuCl2]2 (1) with the respective pentacarbonyl ClM(CO)5 [where M = Re (2); Mn(4)] affords the halide-bridged compounds (η6-cymene)Ru(μ-Cl)3Re(CO)3 (3) and [fac-ClRu(CO)3]2(μ-Cl)4Mn(H2O)2 (5). 3 and 5 have been isolated and characterized spectroscopically in solution and their molecular structures established by X-ray crystallography.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号