首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The present investigation is related to the deposition of single-phase nano-sheets spinel nickel ferrite (NiFe2O4) thin films onto glass substrates using a chemical method. Nano-sheets nickel ferrite films were deposited from an alkaline bath containing Ni2+ and Fe2+ ions. The films were characterized for their structural, surface morphological and electrical properties by means of X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and two-point probe electrical resistivity techniques. The X-ray diffraction pattern showed that NiFe2O4 nano-sheets are oriented along (3 1 1) plane. The FT-IR spectra of NiFe2O4 films showed strong absorption peaks around 600 and 400 cm−1 which are typical for cubic spinel crystal structure. Microstructural study of NiFe2O4 film revealed nano-sheet like morphology with average sheet thickness of 30 nm. The room temperature electrical resistivity of the NiFe2O4 nano-sheets was 107 Ω cm.  相似文献   

2.
Nanocrystalline Nickel ferrite (NiFe2O4) and Zn substituted nickel ferrite (NiZnFe2O4) have been synthesized by the refluxing method. These ferrites were characterized by XRD, TEM, Mossbauer spectroscopy and VSM in order to study the effect of zinc substitution in nickel ferrite. XRD diffraction results confirm the spinel structure for the prepared nanocrystalline ferrites with an average crystallite size of 14-16 nm. Lattice parameter was found to increase with the substitution of Zn2+ ions from 8.40 Å to 8.42 Å. TEM images confirmed average particle size of about 20 nm and indicates nanocrystalline nature of the compounds. A shift in isomeric deviation with the doublet was observed due to the influence of Zn substitution in the nickel ferrite. The Zn content has a significant influence on the magnetic behavior and electrical conductivity of NiFe2O4. Saturation magnetization drastically increased whereas room temperature electrical conductivity decreased due to the addition of Zn content in NiFe2O4, indicating super magnetic material with lesser coercivity.  相似文献   

3.
The substituted nickel ferrite (NiFe2−2xSnxCuxO4, x=0, 0.1, 0.2, 0.3) was prepared by the conventional ceramic method. The effect of substitution of Fe3+ ions by Sn4+ and Cu2+ cations on the structural and magnetic properties of the ferrite was studied by means of 57Fe Mössbauer spectroscopy, alternating gradient force magnetometry (AGFM) and Faraday balance. Whereas undoped NiFe2O4 adopts a fully inverse spinel structure of the type (Fe)[NiFe]O4, Sn4+ and Cu2+ cations tend to occupy octahedral positions in the structure of the substituted ferrite. Based on the results of Mössbauer spectroscopic measurements, the crystal-chemical formula of the substituted ferrite may be written as (Fe)[NiFe1−2xSnxCux]O4, where parentheses and square brackets enclose cations in tetrahedral (A) and octahedral [B] coordination, respectively. The Néel temperature and the saturation magnetization values of the NiFe2−2xSnxCuxO4 samples were found to decrease with increasing degree of substitution (x). The variation of the saturation magnetization with x measured using the AGFM method and that calculated on the basis of the Mössbauer spectroscopic measurements are in qualitative agreement.  相似文献   

4.
Swift heavy ions of various energies are being used for material modifications. The induced modifications depend on the kind of defects produced during interaction of ions with the target material. In the present work, irradiation of 200 MeV Ag beam-induced effects in NiFe2O4 and NiCe0.04Fe1.96O4 nanoparticles are studied at two different fluences, 2×1012 and 1×1013 ions/cm2. Nanoparticles of nickel ferrite and Ce-doped nickel ferrite were prepared by chemical route. X-ray diffraction pattern shows peaks corresponding to pure spinel structure in both the systems, NiFe2O4 and NiCe0.04Fe1.96O4. The pristine as well as irradiated nanoparticles were characterized by high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, electron paramagnetic resonance spectroscopy (EPR) and vibrating sample magnetometer (VSM). Raman spectra show bands corresponding to spinel structure. After irradiation, the position of the bands does not change significantly for both samples. The widths corresponding to the same band in both the systems show opposite trend with fluence. VSM results show that after irradiation, the magnetization decreases from 40 to 32 A m2/kg for NiFe2O4 and from 39 to 31 A m2/kg for NiCe0.04Fe1.96O4. EPR results show that after doping with Ce as well as irradiation, the EPR line width is reduced, making samples important for applications.  相似文献   

5.
This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ~9.5 nm virtually monodispersed nickel ferrite (NiFe2O4) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe2O4 particles at nano scale for the first time. It is found that each NiFe2O4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe2O4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe2O4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe2O4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.  相似文献   

6.
Nanostructured nickel ferrites (NiFe2O4) were prepared by doping with Ti4+ ions using solid-state reaction route. Lowest grain size of 55 nm was achieved in the specimens with 20 mole% TiO2 doping. Magnetization in the specimens decreases with decreasing grain sizes. Lower volume fractions of ferrite phase due to dissociation of the magnetic phase into smaller particles by the disruption of super exchange interaction by the titanium substitution results a decrease in magnetizations. Coercivity showed an increasing trend. This was explained as arising due to multidomain/monodomain magnetic behavior of magnetic nanoparticles. Small polaron hopping conduction between Fe2+ and Fe3+ sites controls the dc electrical properties of the specimens. The presence of an interfacial amorphous phase between the sites is evident from Mott's analysis. Specimens containing 10 mole or more TiO2 and sintered at 1350 °C contain NiTiO3 as a secondary phase and show unusual dc conductivity.  相似文献   

7.
In this study, the NiFe2O4 nanoparticles have been prepared by co-precipitation and calcination process. Using a vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometer of X-ray (EDX), and X-ray photoelectron spectroscopy (XPS), the samples obtained by co-precipitation and then by further calcination have been analyzed. The experimental results show that the precursor synthesized by co-precipitation is the composite of both amorphous FeOOH and Ni(OH)2, but has no amorphous NiFe2O4. The results of both EDX and XPS revealed that the FeOOH species is wrapped up by Ni(OH)2 species. In the calcination process, the amorphous composite is dehydrated and transformed gradually into crystalline NiFe2O4 nanoparticles, with the metal ions diffusing. The reaction is different from the one used to prepare other ferrite (e.g., CoFe2O4, MnFe2O4, Fe3O4, etc.) nanoparticles directly by co-precipitation. With increasing calcination temperature, the NiFe2O4 grains grow and the magnetization is enhanced.  相似文献   

8.
The optical absorption spectra, microstructure and electronic spin resonance parameters (electronic spin resonance (ESR) g factor) for Ni2+ ions at octahedral centers of nickel ferrite nanoparticles are calculated from the two-spin–orbit-parameter model. The effect of spin–orbital coupling of the central metal 3d8 ions and ligand oxygen ions has been taken into account in the full energy matrix and ESR g formula. The calculated results are in good agreement with the observed values. In addition, the microstructures of Ni2+ ions at octahedral centers in NiFe2O4 are reasonably determined from the calculations.  相似文献   

9.
Mössbauer spectra and electrical conductivities were measured for the purpose of studying on the conduction mechanism of xFe2O3?(40-x)V2O5?60P2O5 glasses. The ratios Fe2+/Fe2++Fe3+ in xFe2O3?(40-x)V2O5?60P2O5 glasses were determined by Mössbauer spectroscopy. On the composition dependence of D. C. conductivities in these glasses, the minimum of log σ at each temperature was obtained at 25Fe2O3?15V2O5?60P2O5. The conductivities of ternary glassses in Fe rich region could be explained only by the changes of carrler (Fe2+) concentration and the hopping conduction between Fe2+ ions and Fe3+ ions in binary glasses. In V rich region, the saturation tendency of D. C. conductivities are observed. It was suggested to be explained by increasing of V4+ ions due to the influence of Fe ions.  相似文献   

10.
The effects of the precursor types of Ni and Fe components on the morphology, mean size, and magnetic property of NiFe2O4 powders prepared by spray pyrolysis from the spray solution, with citric acid were studied. The precursor powders with hollow and thin wall structure turned to the nano-sized NiFe2O4 powders after post-treatment at a temperature of 800 °C. The nickel ferrite powders obtained from the spray solution with ferric chloride had nanometer sizes and narrow size distributions irrespective of the types of nickel precursor. The nickel ferrite powders obtained from the spray solution with ferric nitrate and nickel chloride also had nanometer size and narrow size distribution. The saturation magnetizations of the NiFe2O4 powders changed from 37 to 42 emu/g according to the types of the Fe and Ni precursors. The saturation magnetizations of the NiFe2O4 powders increased with increasing the Brunauer-Emmett-Teller (BET) surface areas of the powders.  相似文献   

11.
In the present study, glasses with composition XBi2O3 (60?X)P2O5 20Fe3O4 20Li2O (0≤X≤15) mol% have been prepared by the conventional melt quenching technique. The IR studies show the presence of FeO4, FeO6, BiO6, PO3, PO and PO4 structural groups. The hyperfine structure of these glasses is investigated using Mössbauer spectroscopy. ME spectroscopy indicated the presence of two different oxidation states of iron (Fe2+ and Fe3+). The ferrous ions Fe2+ occupied tetrahedral coordination states, while the ferric ions Fe3+ occupied both tetrahedral and octahedral coordination states. The effect of partial replacement of P2O5 by Bi2O3 on the electric-dielectric properties is studied in more details. It is found that, unmonotonic variation in the σdc, (θD/2), σac(ω), ε1(ω), and ε2(ω), as a function of Bi2O3 contents. Also it is found that, the power law exponent, s, is temperature dependent and the CBH model is the most applicable conduction mechanism in all glass samples. Pseudo Cole-Cole diagram of the investigated glassy samples exhibit similar behavior where all plots show a single semicircle indicating a single relaxation process.  相似文献   

12.
《Current Applied Physics》2019,19(4):548-555
Magnetic powders of nickel ferrite (NiFe2O4) were successfully synthesized by combustion synthesis in air using iron (Fe), iron oxide (Fe2O3), and nickel oxide (NiO) as reactants and sodium perchlorate (NaClO4) as fuel (or oxidizing agent). The thermal behaviors were characterized using thermogravimetric analysis (TG) and differential thermal analysis (DSC). The as-combusted and final nickel ferrite powders were characterized in terms of chemical composition and morphology by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) coupled with energy dispersive X-Ray spectroscopy (EDX). In addition, magnetic properties were examined by vibrating sample magnetometer (VSM). The results of TG/DSC analysis indicated that increasing the content of NaClO4 increased the exothermicity of combustion reaction. XRD indicated that the final nickel ferrite powders formed a single spinel NiFe2O4 phase when the amount of NaClO4 used was 0.08 or 0.10 mol. SEM revealed roughly octahedron particles with sizes in a sub-micrometer range (∼500 nm). All final products exhibited soft magnetism and, synthesis that included 0.1 mol of NaClO4 produced pure NiFe2O4 powders that had a saturation magnetization (Ms) of 58.93 emu/g, which is higher than the reported value (55 emu/g) for the bulk product.  相似文献   

13.
Room temperature electron paramagnetic resonance (EPR) spectra and temperature dependent magnetic susceptibility data have been obtained on bulk x(ZnO,Fe2O3)(65−x)SiO220(CaO, P2O5)15Na2O (6≤x≤21 mole%) glasses prepared by melt quenching method. EPR spectra of the glasses revealed absorptions centered at g≈2.1 and 4.3. The variations of the intensity and line width of these absorption lines with composition have been interpreted in terms of the variation in the concentration of the Fe2+ and Fe3+ ions in the glass and the interaction between the iron ions. EPR and magnetic susceptibility data of the glasses reveal that both Fe2+ and Fe3+ ions are present in the glasses, with their relative concentration being dependent on the glass composition. The studies reveal superexchange type interactions in these glasses, which are strongly dependent on their iron content.  相似文献   

14.
YF3 nanocrystals triply-doped with Yb3+, Ho3+ and Tm3+ ions embedded in amorphous silica matrix have been successfully obtained by heat treatment of precursor sol–gel glasses for the first time to our knowledge and confirmed by X-ray diffraction and luminescence measurements. Simultaneous UV and visible efficient up-conversion emissions, with well-resolved Stark structure, under 980 nm infrared pump are observed, indicating the effective partition of rare-earth ions into a crystalline-like environment of the YF3 nanocrystals. Corresponding energy transfer mechanisms have been analyzed and overall colour emission has been quantified in terms of standard chromaticity diagram. By an adequate doping level and heat treatment temperature of precursor sol–gel glasses, a bright white colour has been accomplished, close to the standard equal energy white light illumination point, with potential applications in photo-electronic devices and information processing.  相似文献   

15.
The X-band EPR spectra of Cr3+, Mn2+, and Fe3+ impurity ions in glasses of (CaO?Ga2O3?GeO2) system are investigated in the 77÷300 K temperature range. The experimental data analysis yields the following results: (i) Impurity chromium ions are incorporated into the (CaO?Ga2O3?GeO2) glasses network in Cr3+ (3d3,4F3/2) paramagnetic valence state only and occupy the strong distorted oxygen coordinated octahedral sites. (ii) For all activated and non-activated (CaO?Ga2O3?GeO2) glasses the iron impurity is present at concentration roughly 0.01 wt.%. Isotropic EPR signals atg eff=4.29 andg eff=2.00 are assigned to Fe3+ (3d5,6S5/2) ions in the sites with strong rhombic distortion and in the sites with nearly cubic symmetry respectively. (iii) The manganese EPR spectrum in (CaO?Ga2O3?GeO2) glasses is weakly dependent on temperature, doping procedure as well as manganese concentration. EPR spectra of impurity manganese ions in glasses with Ca3Ga2Ge3O12 and Ca3Ga2Ge4O14 compositions are virtually identical and belong to Mn2+ (3d5,6S5/2) ions. Impurity manganese ions are incorporated into the (CaO?Ga2O3?GeO2) glass network as isolated Mn2+ centres and clusters of Mn2+ ions.  相似文献   

16.
The X-ray Absorption Near-Edge Structure (XANES) of V in vanadium-iron glasses (50P2O5 + (50?x)FeO + xV2O5) have been measured. The effective charge of V ions in glasses has been determined. At low V2O5 concentration (x ~ 5) only V4+ with 6-fold coordination is present on the contrary a static mixed valence state (V4+, V5+) has been found at high concentrations 20?x?50. The results explain the electron hopping conductivity effects at high V2O5 concentration (x ~ 50) involving V4+ ? V5+ pairs and at low V2O5 concentration (x?10) involving V4+ ? Fe3+ pairs.  相似文献   

17.
Calcination of hydrated iron salts in the pores of both spherical and rod‐shaped mesoporous silica nanoparticles (NPs) changes the internal structure from an ordered 2D hexagonal structure into a smaller number of large voids in the particles with sizes ranging from large hollow cores down to ten nanometer voids. The voids only form when the heating rate is rapid at a rate of 30 °C min?1. The sizes of the voids are controlled reproducibly by the final calcination temperature; as the temperature is decreased the number of voids decreases as their size increases. The phase of the iron oxide NPs is α‐Fe2O3 when annealed at 500 °C, and Fe3O4 when annealed at lower temperatures. The water molecules in the hydrated iron (III) chloride precursor salts appear to play important roles by hydrolyzing Si? O? Si bonding, and the resulting silanol is mobile enough to affect the reconstruction into the framed hollow structures at high temperature. Along with hexahydrates, trivalent Fe3+ ions are assumed to contribute to the structure disruption of mesoporous silica by replacing tetrahedral Si4+ ions and making Fe? O? Si bonding. Volume fraction tomography images generated from transmission electron microscopy (TEM) images enable precise visualization of the structures. These results provide a controllable method of engineering the internal shapes in silica matrices containing superparamagnetic NPs.  相似文献   

18.
The synthesis of hexagonal barium ferrite (BaFe12O19) was studied under hydrothermal conditions by a method in which a significant amount of ferrous chloride was introduced alongside ferric chloride among the starting materials. Though all of the Fe2+ ions in the starting material were converted to Fe3+ ions in the final product, Fe2+ was confirmed to participate differently from the Fe3+ used in the conventional method in the mechanism of forming barium ferrite. Indeed the efficiency of the synthesis and the quality of the product and the lack of impurities such as Fe2O3 and BaFe2O4 were improved when Fe2+ was included. However, the amount of ferrous ions that could be included to obtain the desired product was limited with an optimum ratio of 2:8 for FeCl2/FeCl3 when only 2 h of reaction time were needed. It was also found that the role of trivalent Fe3+ could be successfully replaced by Al3+. Up to 50% of the iron could be replaced by Al3+ in the reactants to produce Al-doped products. It was also found that the ratio of Fe2+/M3+ could be increased in the presence of Al3+ to produce high quality barium ferrite.  相似文献   

19.
Powder samples of Sr0.5Ca0.5Fe0.5Me0.5O3 (Me = Co, Zr or Mn) and Sr0.3La0.7FeO3 are investigated by X-ray diffraction and Mössbauer effect spectroscopy. Analysis of the completely ordered spectra suggested three kinds of iron ions coexist in general where the resolution into the different valence state is clearly seen. The Mössbauer effect parameters values are found to be close to those expected for Fe3+, Fe4+ and Fe5+ indicating that some of the tetravalent iron ions in its high spin state disproportionate into Fe3+ and Fe5+ ions passing through temperature dependent intermediate valence states.  相似文献   

20.
Mössbauer spectroscopic studies of BaFeO4 and K2FeO4 as prepared, then either sealed, or exposed to air, or exposed to moist air for a period up to more than one year, were performed at room temperature as a function of time. Some of the samples were studied as a function of temperature down to 4.2 K. K2FeO4 and BaFeO4 after preparation, exhibit a pure Fe6+ spectrum. K2FeO4 shows low stability. After a period of 14 months in a sealed sample holder, the spectrum exhibits 83% noncrystalline Fe3+, as Fe2O3 nanoparticles, and only 17% of the original Fe6+. BaFeO4 sealed, or exposed to dry air disintegrates slowly, exhibiting a spectrum composed of three subspectra. In addition to the original Fe6+ and final Fe3+ subspectra, a subspectrum, of an intermediate stage of a crystalline Fe4+ system, is present. In the first month the increase of the Fe3+ subspectrum is 15%, and that of the Fe4+ is 8%. BaFeO4 exposed to moist air, disintegrates at a very fast rate. The Fe3+ subspectrum, due to Fe2O3 nanoparticles, increases in the first days at the rapid rate of ∼13%/day, and there is no evidence for Fe4+ in the spectrum. The Fe6+ in BaFeO4, Fe3+ and Fe4+ in the disintegrated systems are all magnetically ordered at 4.2 K. Above 90 K the Fe3+ subspectra exhibit a superposition of a paramagnetic doublet and a diffuse magnetic sextet, with relative intensities changing with temperature, and changing from sample to sample according to their blocking temperatures, which are determined by the distribution in size of the nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号