首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Potassium peroxypentafluorotantalate monohydrate K2TaO2F5 · H2O was synthesized by the introduction of hydrogen peroxide and potassium chloride into highly pure tantalum-containing fluoride solutions at 70°C followed by cooling of the mixture to room temperature at a rate of 10–15 K/h. The X-ray diffraction analysis revealed that K2TaO2F5 · H2O crystallized in the monoclinic crystal system with the following unit cell parameters: a = 8.965(2) Å, b = 8.966(2) Å, c = 9.257(2) Å, β = 99.78(3) °, Z = 4, V unit cell = 733.3(5) Å3, ρcalcd = 3.681 g/cm3, FW = 404.13, space group C 2 3 = C2(5). The thermolysis of K2TaO2F5 · H2O was studied at 160–1000°C, and the phases formed under specified conditions were determined.  相似文献   

3.
Although LiFePO4 (LFP) is considered to be a potential cathode material for the lithium-ion batteries, its rate performance is significantly restricted by sluggish kinetics of electrons and lithium ions. Several attempts have been made so far to improve the performance of LiFePO4 by reducing the grain size, doping with aliovalent atoms, and coating conductive materials such as carbon or RuO2. We report here synthesis of LFP nanoplates by solvothermal method, tailoring the thickness as well as carbon coverage at surfaces to explore their influence on the storage performance. Due to the fact that Li+ ion diffuses along the b-axis, solvothermal method was aimed to control the thickness of nanoplates across the b-axis. We synthesized several nanoplates with various plate thicknesses along b-axis; among those, nanoplates of LFP with ~30-nm-thick b-axis having thin (2–5 nm) and uniform layer of carbon coating exhibits high storage capacity as well as high rate performances. Thus, a favorable morphology for LiFePO4 has been achieved via solvothermal method for fast insertion/extraction of Li+ as compared to spherical nanoparticles of carbon-coated LFP. Galvanostatic cycling shows a capacity of 164?±?5 mAh g?1 at 0.1 C rate, 100?±?5 mAh g?1 at 10 C rate, and 46?±?5 mAh g?1 at 30 C rate, with excellent capacity retention of up to 50 cycles. Further attempts have been made to synthesize LiMnPO4 (LMP) as well as Li(Fe1???x Mn x )PO4/C (x?=?0.5) nanoplates using solvothermal method. Although LiMnPO4 does not exhibit high storage behavior comparable with that of LiFePO4, the mixed systems have shown an impressive storage performance.  相似文献   

4.
Tetracosactide (Synacthen), a synthetic analogue of adrenocorticotropic hormone (ACTH), can be used as a doping agent to increase the secretion of glucocorticoids by adrenal glands. The only published method for anti-doping control of this drug in plasma relies on purification by immunoaffinity chromatography and LC/MS/MS analysis. Its limit of detection is 300 pg/mL, which corresponds to the peak value observed 12 h after 1 mg Synacthen IM administration. We report here a more sensitive method based on preparation of plasma by cation exchange chromatography and solid-phase extraction and analysis by LC/MS/MS with positive-mode electrospray ionization using 7–38 ACTH as internal standard. Identification of Synacthen was performed using two product ions, m/z 671.5 and m/z 223.0, from the parent [M?+?5H]5+ ion, m/z 587.4. The recovery was estimated at 70%. A linear calibration curve was obtained from 25 to 600 pg/mL (R 2?>?0.99). The lower limit of detection was 8 pg/mL (S/N?>?3). The lower limit of quantification was 15 pg/mL (S/N?>?10; CV%?相似文献   

5.
The heat capacities of 1-butyl-3-methylimidazolium lactate ionic liquids ([C4mim][Lact]) were measured with a highly accurate automatic adiabatic calorimeter over the temperature range from 79 to 406 K. And the experimental values of molar heat capacities were fitted to a polynomial equation using least square method in the appropriate temperature ranges. The standard molar heat capacity was determined to be 1734.46?±?5.12 J K?1 mol?1 at 298.15 K. The molar enthalpy and molar entropy of the transition were determined to be 15.575?±?0.045 and 64.44?±?0.14 J K?1 mol?1. Other thermodynamic properties, such as (HT???H298.15) and (ST???S298.15), were also calculated. Furthermore, when the temperature reaches 241.87 K, the strongest peaks appeared by analysis of the heat capacity curve. This phenomenon could be explained from the interionic interaction, which is the hydrogen bond between the anions and cations.  相似文献   

6.
The ionic complexes simultaneously containing negatively charged coordination structures of metal phthalocyanines and fullerene anions, viz., {MnIIPc(CH3CH2S?) x ·(I?)1?x }·(C60 ·?)· ·(PMDAE+)2·C6H4Cl2 (PMDAE is N,N,N′,N′,N′-pentamethyldiaminoethane, x = 0.87, 1) and {ZnIIPc(CH3CH2S?)y·(I?)1?y }2·(C60 ?)2·(PMDAE+)4·(C6H4Cl2) (y = 0.5, 2) were synthesized. The both compounds were obtained as single crystals, which made it possible to study their crystal structures. In complex 1, the fullerene radical anions form honeycomb-like layers in which each fullerene has three neighbors with center-to-center interfullerene distances of 10.13–10.29 Å. Rather long distances between the C60 ·? radical anions results in the retention of monomeric C60 ·? in this complex down to the temperature of 110(2) K. In complex 2, fullerenes form dimers (C60 ?)2 bonded by one C-C bond. The dimers are packed in corrugated honeycomb-like layers with interfullerene center-to-center distances of 9.90–10.11 Å. Manganese(II) and zinc(II) phthalocyanines coordinate iodide and ethanethiolate anions to the central metal atom to form unusual negatively charged coordination structures MIIPc(An?) (An? is anion) packed in dimers {MIIPc(An?)}2 with a short distance between the phthalocyanine planes (3.14 Å in 1 and 3.27 Å in 2). The pthalocyanine dimers also form layers with the PMDAE+ cations, and these layers alternate with the fullerene layers. The packing of spherical fullerenes with planar phthalocyanine molecules is attained by the insertion of fullerenes between the phenylene groups of phthalocyanines. The π-π-interactions of the porphyrin macrocycle with five- or six-membered fullerene rings are characteristic of the earlier studied ionic porphyrin and fullerene complexes. Such interactions are not observed for ionic complexes 1 and 2.  相似文献   

7.
A complex [Zn(C8H7O3)2(H2O)2] (C8H8O3 is vanillin) has been synthesized and characterized by IR, elemental analysis, and X-ray diffraction single-crystal analysis. The crystals are monoclinic, space group C2/c, a = 22.236(8) Å, b = 10.594(2) Å, c = 7.8190(16) Å, α = 89.90(3)°, β = 106.87(4)°, γ = 89.99(3)°, V = 1762.6(8) Å3, Z = 4, F(000) = 832, S = 1.079, ρ c = 1.521g cm?3, R = 0.0221, R w = 0.0604, μ = 1.433 mm?1. The Zn2+ ion is six-coordinated with a distorted octahedron geometry. The complex forms a three-dimensional network through intermolecular hydrogen bonds. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal conditions by the TG and DTG methods. The kinetic equation can be expressed as dα/dt = Ae?E/RT 2(1 ? α)[1 ? ln(1 ? α)]1/2. The kinetic parameters (E, A), activation entropy ΔS , and activation free-energy ΔG were also gained.  相似文献   

8.
Properties of CF x /Li and CF x /Na cells were examined while using galvanostatic charging/discharging, electrochemical impedance spectroscopy and scanning electron microscopy (SEM). The capacity during the first cycle was as high as ca. 1000 mAh g?1. Such an electrode is suitable for primary CF x /Li and CF x /Na batteries. SEM images of CF x cathode showed that during discharging it was transformed into amorphous carbon and LiF or NaF crystals (of diameter of ca. 5–20 μm). These systems (C?+?LiF or C?+?NaF) cannot be reversibly converted back into CF x /Li or CF x /Na, respectively. Exchange current densities are between 10?7 Acm?2 and 10?9 Acm?2 when working with LiPF6 and NaPF6 electrolytes (1.12?×?10?7 Acm?2 and 6.82?×?10?9 Acm?2, respectively). Those values are low and indicate that the charge transfer process may be the rate-determining step. Activation energies for the charge transfer process were 57 and 72 kJ mol?1 for CF x /LiPF6 and CF x /NaPF6 systems, respectively. Higher activation energy barrier for the CF/Na+?+?e??→?C?+?NaF reaction results in lower observed exchange current density in comparison to the system with lithium ions.  相似文献   

9.
Conversion anodes comprising non-stoichiometric black NiO suffer severe capacity fading in Li-ion batteries despite having a high Li+ ion diffusion coefficient. We attribute this capacity fading to (i) its small crystallite size (~?8 nm) and (ii) high charge transfer resistance (Rct ~?60–180 Ω cm2). Small crystallites enhance grain boundaries which promote Li+ ion diffusion without efficient material utilization. In contrast, the stoichiometric green NiO anodes deliver a stable capacity of 280 mAh g?1 over 50 charge-discharge cycles. The comparatively higher capacity of green NiO can be explained from its (i) large crystallite size (~?104 nm) and (ii) negligible Rct values.  相似文献   

10.
The nanosized LiNiPO4 was successfully synthesized by a solid-state reaction between the new Ni3(PO4)2·8H2O precursor and Li3PO4 at 700 °C in air atmosphere. The formation of LiNiPO4 was generated via three thermal decomposition steps. The samples were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, atomic absorption/atomic emission spectrophotometers, and thermogravimetric/differential thermal gravimetric/differential thermal analysis techniques. The activation energy (Eα) values of the three steps were calculated by Vyazovkin method and determined to be 90.39?±?5.79, 197.81?±?7.46, and 308.66?±?12.03 kJ mol?1, respectively. The average Eα values from this method are very close to Eα from KAS method. The most probable mechanism functions g(α) of three steps were evaluated by using the masterplots method and found to be the F1/3 (first step), F3/2 (second step), and D4 (final step), respectively. The pre-exponential factors (A) values of three steps were obtained based on the Eα and g(α). The kinetic triplet parameters of the formation of LiNiPO4 from the new precursor are reported in the first time.  相似文献   

11.
The formulas for calculation of the number of atoms in nanoparticles with symmetry group D 6h are reported. The numbers of atoms are determined by six structurally invariant numbers and the “quantum number” of the group order n. Eight classes of nanostructures with symmetry group D 6h are revealed: C ? + 12z , where z = 0, 1, 2, …, and C ? is C 2, C 6, C 8, or C 14. The sum rule for the coordination numbers of all atoms of subshells related to symmetry elements is established. Two-dimensional nanoparticles are considered.  相似文献   

12.
A new V6O13-based material has been synthesized via the sol–gel route. This sol–gel mixed oxide has been obtained from an appropriate heat treatment of the chromium-exchanged V2O5 xerogel performed under reducing atmosphere. This new compound, with the chemical formula Cr0.36V6O13.50, exhibits a monoclinic structure (C2/m) with the following unit cell parameters, a=11.89 Å, b=3.68 Å, c=10.14 Å, β=101.18°. The electrochemical characterization of this compound has been performed using galvanostatic discharge–charge experiments in the potential range 4–1.5 V and completed by ac impedance spectroscopy measurements. It exhibits a specific capacity of about 370 mAh g?1, which makes the compound Cr0.36V6O13.50 the best one in the V6O13-based system: 85% of the initial capacity (315 mAh g?1) after the 35th cycle is still available at C/25 without any polarization. From impedance spectroscopy, a high kinetics of Li transport (D Li=1.8×10?9 cm2 s?1) is found at mid-discharge.  相似文献   

13.
The phase and chemical compositions of the precipitates formed in the LiVO3-VOSO4-H2O system at initial pH within 1 ≤ pH ≤ 4 and 90°C were studied. The following phases were prepared: an α phase Li1.4(VO)1.3[H2V10O28] · nH2O and a β phase Li0.6 ? x H1.4 + x [V12O31 ? y/2] · nH2O (0 ≤ x ≤ 0.5, 1.3 ≤ y ≤ 2.0) with a layered structure. Li0.4V2O5 · H2O nanorods with the interlayer distance 10.30 ± 0.08 Å were synthesized at 180°C in an autoclave. The morphology, IR spectra, and main formation processes for these polyvanadates were studied.  相似文献   

14.
A new method was developed and optimized for the detection of major “novel” brominated flame retardants (NBFRs), which included decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), tetrabromobisphenol A-bis(2,3-dibromopropylether) (TBBPA-DBPE), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH) and hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO). Several solid phase sorbents were tested, and finally, a two-step cleanup procedure was established. The first step on activated silica was used to fractionate the dust extracts, while the second step on acidified silica (silica gel impregnated with sulphuric acid 44% w/w) and on Florisil®, respectively, was essential for advanced cleanup. High recoveries for NBFRs (range, 75–94%) were achieved. Analysis was performed by gas chromatography coupled with mass spectrometry in electron capture negative ionization using a DB-5ms (15 m?×?0.25 mm?×?0.1 μm) capillary column. Quantification of DBDPE, BTBPE and TBBPA-DBPE was based on ion m/z 79, while characteristic ions were used for quantification of TBB (m/z 359), HCDBCO (m/z 310) and TBPH (m/z 384). The method provided good repeatability; within- and between-day precision were ≤14% for all NBFRs. Method limits of quantification ranged between 1 and 20 ng g?1; dust and NBFRs were not detected in blanks. The method was further applied to indoor dust (n?=?21) collected from e-waste facilities in Thailand. Except for HCDBCO, all NBFRs were detected in the e-waste dust with concentrations up to 44,000 and 22,600 ng g?1 DBDPE and BTBPE, respectively. The dust profile was dominated by DBDPE (50%)?>?BTBPE (45%)?>?TBBPA-DBPE (3%)?>?TBPH (1.9%)?>?TBB (0.1%). Significant correlations (p?相似文献   

15.
The Mn3s X-ray photoelectron spectra of manganites were studied. It was shown that for the formal valence of manganese from 3+ to 3.3+, the doping holes are O2p in character; as the valence of manganese increases further, the Mn3d states acquire holes. For La0.7Sr0.3MnO3, the Mn3p-3d resonance spectra provided information about the occupied and unoccupied Mn3d states, and the correlation energy U = 6.7 eV was determined experimentally. An analysis of X-ray dichroism on the L absorption spectra of three-dimensional La7/8Sr1/8MnO3 showed that the cooperative Jahn Teller distortion of the orthorhombic phase at 240 K was related to (x 2 ? z 2)/(y 2 ? z 2) type orbital ordering.  相似文献   

16.
The compound Li2Ge2O5 has been prepared by annealing a glassy melt (500° C). The lattice parameters have been determined from single crystal photographs:a=5,99,b=15,19,c=4,97 Å and β=90,0°, space group C S 4 :?Cc. Li2Ge2O5 has a layer structure and is isostructural with Li2Si2O5.  相似文献   

17.
B-Nb2O5 was recrystallized from commercially available oxide, and XRD analyses indicated that it is stable in contact with solutions over the pH range 0 to 9, whereas solid polyniobates such as Na8Nb6O19?13H2O(s) appear to predominate at pH>9. Solubilities of the crystalline B-Nb2O5 were determined in five NaClO4 solutions (0.1≤I m /mol?kg?1≤1.0) over a wide pH range at (25.0±0.1)?°C and at 0.1 MPa. A limited number of measurements were also made at I m =6.0 mol?kg?1, whereas at I m =1.0 mol?kg?1 the full range of pH was also covered at (10, 50 and 70)?°C. The pH of these solutions was fixed using either HClO4 (pH≤4) or NaOH (pH≥10) and determined by mass balance, whereas the pH on the molality scale was measured in buffer mixtures of acetic acid?+?acetate (4≤pH≤6), Bis-Tris (pH≈7), Tris (pH≈8) and boric acid?+?borate (pH≈9). Treatment of the solubility results indicated the presence of four species, \(\mathrm{Nb(OH)}_{n}^{5-n}\) (where n=4–7), so that the molal solubility quotients were determined according to:
$0\mathrm{.5Nb}_{2}\mathrm{O}_{5}\mathrm{(cr)+0}\mathrm{.5(2}n-5\mathrm{)H}_{2}\mathrm{O(l)}_{\leftarrow}^{\to}\mathrm{Nb(OH)}_{n}^{5-n}+(n-5)\mathrm{H}^{+}\quad (n=4\mbox{--}7)$
and were fitted empirically as a function of ionic strength and temperature, including the appropriate Debye-Hückel term. A Specific Interaction Theory (SIT) approach was also attempted. The former approach yielded the following values of log?10 K sn (infinite dilution) at 25?°C: ?(7.4±0.2) for n=4; ?(9.1±0.1) for n=5; ?(14.1±0.3) for n=6; and ?(23.9±0.6) for n=7. Given the experimental uncertainties (2σ), it is interesting to note that the effect of ionic strength only exceeded the combined uncertainties significantly in the case of log?10 K s6 to I m =1.0 mol?kg?1, such that these values may be of use by defining their magnitudes in other media. Values of Δ f G o, Δ f H o, S o and \(C_{p}^{\mathrm{o}}\) (298.15 K, 0.1 MPa) for each hydrolysis product were calculated and tabulated.
  相似文献   

18.
Chalcogenide glasses of (As50Se50)100?xAgx (0 ≤ x ≤ 25) were prepared using the melt quenching technique under non-isothermal conditions. Differential scanning calorimetry curves measured at different heating rates (5 ≤ β ≤ 40 K min?1) are used to characterize the as-quenched samples. The thermal stability was monitored through the calculation of the temperature difference T c ? T g, stability parameter S and crystallization rate factor K p. The glass-forming ability (GFA) was investigated on the basis of Hurby parameter H r which is a strong indicator of GFA. In addition, the activation energy of glass transition E t, activation energy of crystallization E c and Avrami exponent n of the studied compositions were determined. The mechanism of crystallization was found to be a combination of two- and three-dimensional crystal growth.  相似文献   

19.
Thermal analysis on organically modified Ca2+-montmorillonite (OMON) and its source materials—octadecylamine (ODA) and Ca2+-montmorillonite (Ca2+-Mon)—was studied using thermally stimulated current (TSC) technique. The appearance of ρ MON peak with the T max = 75 °C shows the ability of the developed TSC system to demonstrate the relaxation effects of dehydration in Ca2+-Mon. It appeared within the temperature range of DSC endothermic peak (30–100 °C) where the T mMON = 58 °C. Segmental motions of ODA chains and structural disruptions in the modifier agent compound produced TSC α ODA, ρ ODA and ρ 1ODA peaks that are comparable to thermal transition and endothermic peaks in DSC profile (T gODA, T m1ODA and T m2ODA). The effect of localized motion in ODA chains as revealed by the TSC βOMON peak (T max = ?23 °C), however, is absent in the DSC profile of OMON. It shows TSC technique has high sensitivity in detecting various relaxation behaviors at molecular level. More evidences are demonstrated by the ρ OMON (T max = 86 °C) and ρ 1OMON (T max = 105 °C) peak originated from the ODA chains structures. These peaks also confirm the intercalation of the modifier cations inside the Ca2+-Mon gallery.  相似文献   

20.
An approximate analytical solution of the Schrödinger equation is obtained to represent the rotational–vibrational (ro-vibrating) motion of a diatomic molecule. The ro-vibrating energy states arise from a systematical solution of the Schrödinger equation for an empirical potential (EP) V ±(r) = D e {1 ? (?/δ)[coth (ηr)]±1/1 ? (?/δ)}2 are determined by means of a mathematical method so-called the Nikiforov–Uvarov (NU). The effect of the potential parameters on the ro-vibrating energy states is discussed in several values of the vibrational and rotational quantum numbers. Moreover, the validity of the method is tested with previous models called the semiclassical (SC) procedure and the quantum mechanical (QM) method. The obtained results are applied to the molecules H2 and Ar2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号