首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well-dispersed resorcinol-formaldehyde-based carbon spheres (RFCs) have been prepared by the polycondensation of resorcinol and formaldehyde with ammonia as catalyst and subsequent carbonization of the obtained polymer. In situ polymerization of the aniline occurred in the suspension of the RFC, and RFC was surrounded by the polyaniline (PANI) wires. The PANI and RFC hybrid network (PRFC) formed gradually. In a three-electrode mode, the specific capacitance (C sp) of PRFC reaches 315 F g?1 at a current density of 1 A g?1 in 2 M H2SO4, much higher than that of pure PANI (225 F g?1) and RFC (121.7 F g?1). Furthermore, the C sp of PRFC retains 80.0 % after 1000 charge-discharge processes at a current density of 5 Ag?1. The enhanced electrochemical performance of the PRFC came from its homogeneous three-dimensional hierarchical network structure, good electric conductivity of the PANI around the RFC, and the synergistic effect between the RFC and PANI.  相似文献   

2.
Polyaniline doped with Zn2+ (PANI/Zn2+) films was synthesized by cyclic voltammetric method on stainless steel mesh substrates in 0.2 mol L?1 aniline and 0.5 mol L?1 sulfuric acid electrolyte with various concentrations of zinc sulfate (ZnSO4·7H2O). The structure and morphology of PANI and PANI/Zn2+ films were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy techniques, respectively. The electrochemical properties of PANI and PANI/Zn2+ films were investigated by cyclic voltammetry, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy in 0.5 mol L?1 H2SO4 electrolyte in a three-electrode system. The results show that the surface morphology of PANI/Zn2+ is more rough than that of pure PANI. The specific capacitance of the PANI/Zn2+ film displays a larger specific capacitance of 738 F g?1, lower resistance, and better stability as compared with the pure PANI film. Thus, good capacitive performance demonstrates its potential superiority for supercapacitors.  相似文献   

3.
In this paper, activated carbon materials were synthesized from pomegranate rind through carbonization and alkaline activation processes. The effects of pyrolytic temperature on the textual properties and electrochemical performance were investigated. The surface area of the activated carbon can reach at least 2200 m2 g?1 at different pyrolytic temperatures. It was found that, at the range of 600–900 °C, decreasing the carbonization temperature leads to the increase of t-plot micropore area, t-plot micropore volume, and capacitance. Further decreasing the carbonization temperature to 500 °C also leads to the increase of t-plot micropore area and t-plot micropore volume, but the capacitance is slightly poorer. The activated carbon carbonized at 600 °C and activated at 800 °C possesses very high specific area (2931 m2 g?1) and exhibits very high capacitance (~268 F g?1 at 0.1 A g?1 and ~242 F g?1 at 1 A g?1). There is no capacitance fading after 2000th cycle.  相似文献   

4.
Thiourea aldehyde resin-based heteroatom doping carbon and graphene composites (RHDC/GN) were prepared by an in situ polymerization and carbonization. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that thiourea aldehyde resin deposited on lamellar GO flakes during the polymerization and RHDC/GN composites had a hierarchical structure. The specific capacitance of the RHDC/GN composites was high up to 355 F g?1, much higher than that of the pure thiourea aldehyde resin-based heteroatom doping carbon (RHDC) with specific capacitance of 135 F g?1 at a current density of 1.0 A g?1 in 6-M KOH electrolyte. And the hetroatoms in RHDC/GN composites increase the specific capacitance, and GN enhances the conductivity of the electrodes which is beneficial to improving electrochemical cycling stability of the electrode significantly. The specific capacitance retains 90.97% after 5000 charge-discharge processes at 10 A g?1, which provides potential as supercapacitors.  相似文献   

5.
Conductive nanocomposites based on polyaniline and graphene (PAni/Gr) were prepared by cheap and efficient mechanochemical method. The uniform distribution of Gr nanoparticles in the polymer matrix and the ordering of the polymer chains due to the action of mechanical shear stresses, which were established by TEM, stipulated high specific capacitance about 920 F g?1 in ??0.2–1.0 V vs. Ag/AgCl potential range. PAni/Gr-based electrodes are able to provide the specific capacitance of ~?750 F g?1 at 2 A g?1 in symmetric supercapacitors (SSC) and stably cycle at the operating voltage V?=?0.65 V for 10,000 charge-discharge cycles with 96% capacitance retention, whereas the increasing of V leads to the loss of stability as a result of the cathode degradation. PAni/Gr-based SSC possessed improved self-discharge showed high rate capability, and the specific power of such SSC could reach ~?10 kW kg?1 at the specific energy of ~?18 W h kg?1.  相似文献   

6.
In direct methanol fuel cells (DMFC), methanol crossover is a major issue which has reduced the performance of polymer electrolyte membrane (PEM) for energy generation. In this study, graphene oxide (GO) and conductive polyaniline decorated GO (PANI-GO) were used as additives in fabrication of sulfonated poly(ether ether ketone) (SPEEK) nanocomposite PEM membrane to reduce methanol crossover. PANI-GO was synthesized by in situ polymerization method and the formation of PANI coated GO nanostructures was confirmed by surface morphology and crystallinity analysis. The membrane morphology and topography analysis confirmed that GO and PANI-GO were well dispersed on the surface of SPEEK membrane. 0.1 wt% PANI-GO modified SPEEK nanocomposite membrane exhibited the highest water uptake and ion exchange capacity of 40% and 1.74 meq g?1, respectively. The oxidative stability of the nanocomposite membranes also improved. Lower methanol permeability of 4.33 × 10?7 cm?2S?1 was noticed for 0.1 wt% PANI-GO modified SPEEK membrane. PANI-GO modified SPEEK membrane enhanced the proton conductivity, which was due to the existence of acidic and hydrophilic group present in PANI and GO. PANI-GO modified SPEEK membrane held higher selectivity of 1.94 × 104 S cm?3 s?1. Overall, these studies revealed that PANI-GO modified SPEEK membrane is a potential material for DMFC applications.  相似文献   

7.
The layered polypyrrole-graphene oxide-sodium dodecylbenzene sulfonate (PPyGO-SDBS) nanocomposites were facilely fabricated via an in situ emulsion polymerization method with the assistance of SDBS as dopant and stabilizer. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and electrochemical performance were employed to analyze the structure and the characteristics of the composites. The results showed that SDBS played an important role in improving the electrochemical performance of the PPyGO-SDBS, by dispersing the PPy between the layers of the GO. The obtained PPyGO-SDBS exhibited remarkable performance as an electrode material for supercapacitors, with a specific capacitance as high as 483 F g?1 at a current density of 0.2 A g?1 when the mass ratio of pyrrole to GO was 80:20. The attenuation of the specific capacitance was less than 20 % after 1,000 charge–discharge processes, supporting the idea that PPy inserted successfully into the GO interlayers. The excellent electrochemical performance seemed to arise from the synergistic effect between the PPy and the GO and the dispersion of the PPy induced by SDBS.  相似文献   

8.
The supercapacitive performances of supercapacitor mainly depend on the physical nanostructure and micro-morphology of electrode materials. Here, we demonstrated the design, synthesis and electrochemical performances of core-shell hollow carbon nanofiber@nickel-cobalt-layered double hydroxide (HCNF@ Ni0.67Co0.33-LDH) nanocomposites with an optimized Ni/Co molar ratio of 2:1. The HCNF was used as superiorly conductive core to sustain the nanoporous silky Ni0.67Co0.33-LDH shell, which can efficiently provide fast transport pathways for electrons and electrolyte ions. The outstanding specific capacitance of 2486 F g?1 at 1 A g?1 based on galvanostatic charge-discharge curves were acquired for the highly electroactive HCNF@Ni0.67Co0.33-LDH. Furthermore, the HCNF@Ni0.67Co0.33-LDH electrode delivered a distinguished rate capability with a specific capacitance of 1890 F g?1 even at 15 A g?1. Notably, an asymmetric supercapacitor with HCNF@Ni0.67Co0.33-LDH as cathode and HCNF as anode was devised, which presented a prominent specific capacitance of 228 F g?1, good energy density of 62.1 Wh kg?1, and impressive cycling stability (90.6% capacitance retention after 10,000 cycles).  相似文献   

9.
Advanced carbon materials formed from abundant biomass are an exciting and promising class for energy devices due to the clear advantages of low cost, sustainability and good physical and electrochemical properties. However, these materials typically do not compete well with their metal functionalised counterparts. In this work, we demonstrate that xCo(OH)2–(1?x)Ni(OH)2 with various Ni:Co ratios can be deposited onto biomass-derived carbon to make a hybrid inorganic-carbon electrode with tuneable physical features and electrochemical performance. These features were tuned by adjusting the Ni:Co ratio within precursor solutions. The electrodes had shown a capacitance ranging from 780.7 to 2041 F g?1, which is very close to the theoretical value for Ni(OH)2 (2365 F g?1). A hypothesis is presented to help explain this performance for a modified, biomass-derived carbon electrode.  相似文献   

10.
Graphene nanosheets, polyaniline (PANI), and nanocrystallites of transition metal ferrite {Fe3O4 (Mag), NiFe2O4 (NiF), and CoFe2O4 (CoF)} have been prepared and characterized via XRD, FTIR, SEM, TEM, UV–vis spectroscopy, cyclic voltammetry, galvanostatic charge discharges, and impedance spectroscopy. Electrochemical measurements showed that supercapacitances of hybrid electrodes made of the ternary materials are higher than that of hybrid electrode made of binary or single material. The ternary hybrid CoF/graphene (G)/PANI electrode exhibits a highest specific capacitance reaching 1123 Fg?1, an energy density of 240 Wh kg?1 at 1 A g?1, and a power density of 2680 Wkg?1 at 1 A g?1 and outstanding cycling performance, with 98.2% capacitance retained over 2000 cycles. The extraordinary electrochemical performance of the ternary CoF/G/PANI hybrid can be attributed to the synergistic effects of the individual components. The PANI conducting polymer enhances an electron transport. The Ferrite nanoparticles prevent the restocking of the carbon sheets and provide Faradaic processes to increase the total capacitance.  相似文献   

11.
The present trend to increase the energy density of electrochemical supercapacitor is to hybrid the electrochemical double layer capacitance electrode materials of carbon with loading or encapsulation of transition metal oxide or conductive polymeric pseudocapacitor materials as the binary or ternary hybrid electrochemical active materials. In this work, we selected polyaniline salt-sulfonated carbon hybrid (PANI-SA?C SA ) as a cheaper electrode material for supercapacitor electrode. Sulfonated carbon (C SA ) was prepared from hydrothermal carbonization of furaldehyde and p-toluenesulfonic acid. Polyaniline-sulfate salt containing sulfonated carbon was prepared by chemical oxidative polymerization of aniline using ammonium persulfate in presence of sulfuric acid and sulfonated carbon via aqueous, emulsion and interfacial polymerization pathways. Formation of hybrid material was confirmed from scanning electron microscopy. Among the hybrid prepared with three different polymerization pathways, hybrid prepared by aqueous polymerization pathway showed better electrochemical performance. The specific capacitance of the hybrid prepared via aqueous polymerization was 600 F g?1, which is higher than that of the pristine PANI-SA (350 F g?1) and C SA (30 F g?1). Hybrid material was subjected for 8000 charge-discharge cycles and at 8000 cycles; it showed 88% retention of its original specific capacitance value of 485 F g?1 with coulombic efficiency (97–100%). These results showed that C SA micro spheres prevent the degradation of PANI-SA chains during charge/discharge cycles. Specific capacitance, cycle life, low solution resistance, low charge transfer resistance and high phase angle value of PANI-SA?C SA supercapacitor cell indicates a higher performance supercapacitor system.
Graphical abstract Synthesis of hybrid of sulfonated carbon with polyaniline sulfate salt and its supercapacitor performance Ravi Bolagam, Palaniappan Srinivasan,* Rajender Boddula
  相似文献   

12.
Crosslinked-polyaniline (CPA) nano-pillar arrays adsorbed on the surface of reduced graphene oxide (RGO) sheets were synthesized by in situ solution polymerization through two steps of reduction. The electrochemical analyses demonstrated that the befittingly reduced CPA/RGO composite exhibited high performance as electrode materials for supercapacitors. The CPA/RGO composite showed very high specific capacitance of 1532 F g?1 at a scan rate of 10 mV s?1 or 694 F g?1 at a current density of 2 A g?1 in 1 M H2SO4 electrolyte, as well as great energy density of 61.4 W h kg?1 at a current density of 2 A g?1. The electrode material also had decent power density of 4 kW kg?1 at a current density of 10 A g?1, and good cycling stability of 92.5 % capacitance retained after 500 cycles of cyclic voltammetry at 500 mV s?1. The neat microstructures and super electrochemical properties suggest the potential use of the composites in supercapacitors.  相似文献   

13.
The large internal surface areas and outstanding electrical and mechanical properties of graphene have prompted to blend graphene with NiCo2O4 to fabricate nanostructured NiCo2O4/graphene composites for supercapacitor applications. The use of graphene as blending with NiCo2O4 enhances the specific capacitance and rate capability and improves the cyclic performance when compared to the pristine NiCo2O4 material. Here, we synthesized two different nanostructured morphologies of NiCo2O4 on graphene sheets by solvothermal method. It has been suggested that the morphologies of oxides are greatly influenced by dielectric constant, thermal conductivity, and viscosity of solvents employed during the synthesis. In order to test this concept, we have synthesized nanostructured NiCo2O4 on graphene sheets by facile solvothermal method using N-methyl pyrrolidone and N,N-dimethylformamide solvents with water. We find that mixture of N-methyl pyrrolidone and water solvent favored the formation of nanonet-like NiCo2O4/graphene (NiCoO-net) whereas mixture of N,N-dimethylformamide and water solvent produced microsphere-like NiCo2O4/graphene (NiCoO-sphere). Electrochemical pseudocapacitance behavior of the two NiCo2O4/graphene electrode materials was studied by cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy techniques. The supercapacitance measurements on NiCoO-net and NiCoO-sphere electrodes showed specific capacitance values of 1060 and 855 F g?1, respectively, at the current density of 1.5 A g?1. The capacitance retention of NiCoO-net electrode is 93 % while that of NiCoO-sphere electrode is 77 % after long-term 5000 charge-discharge cycles at high current density of 10 A g?1.  相似文献   

14.
Vesicular polyaniline (VPANI) has been fabricated for the first time via a facile two-step method, which uses high-quality multilamellar vesicular SiO2 as hard templates. The graphene-wrapped VPANI (VPANI@RGO) composites were prepared by self-assembling graphene oxide onto VPANI and subsequently conducting the hydrothermal reduction process. The morphological characterization of the composites confirms the uniform wrapping of the graphene sheets on the VPANI. The structural characterization of the composites reveals a strong π–π electron and hydrogen bond interaction in the composites. The VPANI@RGO composites exhibit an excellent supercapacitor performance with an enhanced specific capacitance (573 F g?1) and a good cycling stability, which maintains its capacity of up to 85.7 % over 1000 cycles at 1 A g?1.  相似文献   

15.
Binderless chemical synthesis of flexible electrodes (FEs) of FeO(OH) has been carried out by simple and cost-effective successive ionic layer adsorption and reaction (SILAR) technique. In aqueous route synthesis, FeCl3 and NaOH solutions were used as cationic and anionic sources, respectively. Molar concentration of NaOH was kept constant while the molar concentration of FeCl3 was varied from 0.2 to 0.8 M with step increments of 0.2 M to study its effect on physical and electrochemical characteristics of prepared FEs. X-ray diffraction (XRD) patterns of the FEs exhibit existence of tetragonal FeO(OH). SEM images show the rice grain-like morphologies. Cyclic voltammetric analyses indicate the decrease in specific capacitance value with the increase in molar concentration of cationic precursor. For the electrode prepared with 0.2 M FeCl3 as precursor, the observed maximum specific capacitance (SC) was 444.44 F g?1 at 5 mV s?1 in 1 M NaOH, hence these electrodes were used to fabricate the symmetric solid state supercapacitors. Prepared symmetric supercapacitive devices (SSD) were electrochemically analyzed. The maximum SC for the symmetric supercapacitor was found to be 320.50 F g?1 at 5 mV s?1 which was nearly same as that given by GCD analysis which is 313.27 F g?1 at 0.5 mA. Nyquist plot of the device shows minute semicircle in the high frequency region and the mid-low frequency region shows straight line with inclination of nearly \( 40^\circ \) with X-axis. The equivalent series resistance (ESR), charge transfer resistance (Rct) and Warburg impedance (Rw) are found to be 2.58, 2.56 and 0.8 Ω, respectively. The prepared SSD shows high cycling stability with 88% of capacitive retention even after 2000 cycles.  相似文献   

16.
A novel pyridine-containing metal-organic framework (MOF, [Zn(bpdc)DMA]·DMF, bpdc = 2,2′-bipyridine-5,5′-dicarboxylate) was directly carbonized at different temperature to produce nitrogen-doped porous carbons (NPCs). The as-prepared porous carbons, NPC800 (obtained at 800 °C) and NPC1000 (obtained at 1000 °C), were characterized by scanning electron microscopy, X-ray powder diffraction, N2 sorption isotherms, and X-ray photoelectron spectroscopy (XPS). The results from elemental analysis and XPS confirmed that the pyridine groups in MOF served as nitrogen sources to produce NPCs, and NPC800 possessed the higher nitrogen content than NPC1000. N2 sorption data demonstrated that NPC800 exhibited the larger specific surface area and pore volume than NPC1000. The capacitive properties of NPC800 and NPC1000 were investigated in KOH aqueous electrolyte by cyclic voltammetry and galvanostatic charge–discharge curves. NPC800 showed the higher specific capacitance (226.6 F g?1 at 1 A g?1) than NPC1000 and retained 178.0 F g?1 even at a high current density up to 10 A g?1. It was found that the donation of N species to capacitance was more than the role of porosity in view of their synergetic effect.  相似文献   

17.
LaSr3Fe3O10 ? δ powders were synthesized by hydrothermal method and characterized by XRD and SEM. The XRD patterns showed that the sample calcined at 1000 °C was single phase and the sample calcined at 900 °C had tiny amount of LaSrFeO4 phase. The single-phase LaSr3Fe3O10 ? δ powders were used to prepare test electrode. The capacitive behaviors of LaSr3Fe3O10 ? δ electrode were analyzed by cyclic voltammetry, galvanostatic charge-discharge techniques, and electrochemical impedance spectroscopy. The electrochemical results showed a capacity as high as 470 F g?1 at a scan rate of 1 mV s?1 and 380 F g?1 at a charge-discharge current density of 0.1 A g?1 in 6 M KOH solution. The electrode showed good cyclic stability since its capacitive retention is 87.1% after 1000 charge-discharge cycles. The electrochemical performances suggest that LaSr3Fe3O10 ? δ could be a potential candidate as a capacitive electrode material.  相似文献   

18.
A convenient method for the production of graphene is developed using the electrochemical reduction of graphite oxide (GO) in solution without assembling it onto the electrode. The samples were examined by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The results show that the number of oxygen functional groups can be significantly decreased. The electrochemical capacitance of the prepared graphene after 8 h of reduction is 158.5 F g?1 at 0.5 A g?1, much higher than that of GO and carbon nanotubes. The mechanism for this reaction is also proposed in this paper.  相似文献   

19.
Oxygen-rich activated carbon with a three-dimensional network structure was prepared by chemical activation of coal tar residues with potassium hydroxide and subsequent carbonization treatment. Nanostructured Fe3O4/AC composites were then prepared by simple chemical coprecipitation method and were used as active electrode materials for supercapacitors. The electrochemical behaviors of Fe3O4/AC nanocomposites were characterized by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy in 1.0 M Na2SO3 electrolyte. It was shown that the specific capacitance of Fe3O4/AC nanocomposites reached 150 F g?1 at a current density of 3.0 A g?1 and was a great improvement over Fe3O4 or AC alone. Furthermore, as-prepared Fe3O4/AC nanocomposites exhibited long cycle life without obvious capacitance fading even after 1,000 charge/discharge cycles. Compared with pure Fe3O4 and AC, the significant enhanced electrochemical performance of Fe3O4/AC nanocomposites could be reasonably attributed to the positive synergetic effect between Fe3O4 and AC.  相似文献   

20.
Iron oxides are considered as the promising pseudocapacitive materials for high-performance supercapacitors due to their high theoretical specific capacitance, low cost, environmental benignity, and natural abundance. In this work, we study capacitive behavior of different magnetite (Fe3O4) nanoparticles/carbon black (CB) composites ratios. These composites are synthesized by the coprecipitation method in the presence of ultrasonic waves. The structural and morphological characteristics of the magnetite/CB composites are investigated by X-ray diffraction and scanning electron microscopy, respectively. The electrochemical performance of magnetite/CB composite electrodes is tested by cyclic voltammetry and galvanostatic charge/discharge in a Na2SO4 electrolyte. The results indicate that the magnetite/CB electrodes show typical pseudo-capacitive behavior in Na2SO4 solution. Moreover, in comparison to the pure Fe3O4 (37 F g?1) and carbon black (23 F g?1), the as-prepared 45 % magnetite/CB nanocomposite electrode shows a higher specific capacitance (300 F g?1). Additionally, the supercapacitor device of the magnetite/CB nanocomposite exhibits excellent long cycle life along with 98.5 % specific capacitance retained after 10,000 cycle tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号