首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A variety of homonuclear and heteronuclear transition metal carbonyl clusters have been analyzed by ultraviolet laser desorption/ionization time-of-flight mass spectrometry. The spectra were recorded in negative and positive ion modes, using both linear and reflective techniques. A range of different clusters based on different nuclearities, geometries, and ligand types, which include hydrides, phosphines, nitriles, and cyclopentadienyl ligands and naked main group atoms, were studied. These experiments have allowed us to construct a detailed picture of the technique for the analysis of transition metal carbonyl clusters and their derivatives. In general, extensive reactions are observed, cluster aggregation reactions in particular, and from a comparison of the spectra obtained, some mechanistic inferences concerning the aggregation processes have been drawn.  相似文献   

2.
The synthesis and characterization of new cluster compounds represented by the series Ir(4)(CO)(12-x)L(x) (L = tert-butyl-calix[4]-arene(OPr)(3)(OCH(2)PPh(2)); x = 2 and 3) is reported using ESI mass spectrometry, NMR spectroscopy, IR spectroscopy and single-crystal X-ray diffraction. Thermally driven decarbonylation of the cluster compound series represented by x = 1-3 according to the formula above is followed via FTIR and NMR spectroscopies, and dynamic light scattering in toluene solution. The propensity of these clusters to decarbonylate in solution is shown to be directly correlated with number density of adsorbed calixarene phosphine ligands and controlled via Pauli repulsion between metal d and CO 5σ orbitals. The tendency for cluster aggregation unintuitively follows a trend that is exactly opposite to the cluster's propensity to decarbonylate. No cluster aggregation is observed for clusters consisting of x = 3, even after extensive decarbonylation via loss of all bridging CO ligands and coordinative unsaturation. Some of the CO lost during thermal treatment via decarbonylation can be rebound to the coordinatively unsaturated cluster consisting of x = 3. In contrast, the clusters consisting of x = 1 and x = 2 both aggregate into large nanoparticles when treated under identical conditions. Clusters in which the calixarene phosphine ligand is replaced with a sterically less demanding PPh(2)Me ligand 6 lead to significantly less coordinative unsaturation upon thermal treatment. Altogether, these data support a mechanical model of accessibility in coordinatively unsaturated metal clusters in solution, which hinges on having at least three sterically bulky organic ligands per Ir(4) core.  相似文献   

3.
The state of art of the chemical, spectroscopic and structural characterization of platinum carbonyl clusters is reviewed. We begin by enlightening the fundamental contribution given to this chemistry of two great scientists: Paolo Chini and Larry Dahl, two without equal maestros of science and life. We then focus the main body of this review on the challenge represented by studying molecular ions already belonging to the nano regime by size almost 50 years ago, and the challenges their chemistry continues to present also nowadays. In detail, the possible reasons which enable the [Pt3n (CO)6n ]2? oligomers to grow up to n = 10, and why the oligomers with n > 5 may self-assemble in infinite molecular conductor wires are suggested. The interplay between the CO/Ptsurface ratios and electronic effects in driving the platinum cluster from pseudo one- to tri-dimensional globular structures, often representing chunks of the fcc metal lattice or interpenetrated pentagonal prisms and icosahedra, is examined by means of two significant examples. The nanocapacitor behavior of most high-nuclearity carbonyl clusters is briefly recalled and is confirmed by most recent results. The size-induced transition of their metal kernels from insulator to semiconductor and the expected consequences of their eventual transition to a metallic state are also discussed. Finally, we conclude by commenting the present lack of Pt cluster interstitially lodging a main group element and not yet quantitatively-assessed aggregation phenomena in solution, perhaps peculiar of ionic salts of carbonyl clusters, which could make undetectable the NMR signal of any spin-active nuclei beyond a cluster nuclearity of ca. 20–25.  相似文献   

4.
A promising approach to the controlled synthesis of supported nanoparticles involves the use of molecular carbonyl clusters as precursors. Molecular metal clusters consist of a defined number of structurally ordered atoms, and active monodisperse metal particles are formed after dispersing the molecules and removing the ligands. An octanuclear palladium cluster precursor with easily displaceable ligands was used to generate palladium nanoparticles on mesoporous MCM-41. The molecular cluster precursor, [Pd8(CO)8(PMe3)7], was directly adsorbed from solution onto MCM-41, followed by gentle thermolysis which yielded small metal nanoparticles. Compared to MCM-41-based catalysts prepared from palladium salts by conventional methods, this cluster-derived palladium catalyst has shown an efficient activity for liquid-phase hydrogenation of alkenes.  相似文献   

5.
本文以与催化作用紧密相关的金属羰基簇合物的合成和与化学仿生相关的铁硫和钼铁硫簇合物的合成为例,评述了过渡金属簇合物合成化学的发展概况,给出了金属-金属间键合的两条通则(低氧化态金属间容易成键和同一族元素中重金属具有较大的成键倾向)和三类簇合物的主要合成路线。  相似文献   

6.
We report a series of isoelectronic gold-caged metal clusters, M@Au14 (M = Zr, Hf), and anion clusters, M@Au14- (M = Sc, Y), all having a calculated HOMO-LUMO gap larger than the well-known tetrahedral cluster Au20-the 3D metal cluster with a very large measured HOMO-LUMO gap (1.77 eV). The clusters M@Au14 (M = Sc, Y) also exhibit a calculated electron affinity (EA) and vertical detachment energy (VDE) not only higher than the "superhalogen" icosahedral Al13 cluster but also possibly even higher than a Cl atom which has the highest (measured) elemental EA or VDE (3.61 eV).  相似文献   

7.
Conclusion We have examined the structures of transition metal cluster carbonyls Mm(CO)n from the point of view of the geometrical arrangement of the carbonyl ligands, and, in particular, the polyhedra defined by their oxygen atoms. Provided that the metal atom cluster is reasonably spherical (which is presumed to be predetermined by electronic factors), these polyhedra correspond well to the ideal forms calculated by optimisation of mutual repulsions between points on a sphere. Thus the concepts of coordination polyhedra about single central atoms may be successfully applied to the coordination of carbonyl ligands about entire clusters of metal atoms. This is in contrast to the more usual emphasis on the environment of individual metal atoms in the cluster. In the fine balance of factors governing the structures of these molecules and anions, we believe that steric interaction between carbonyl groups is of greater importance than previously thought. The steric crowding of ligands around the central metal atom cluster has important implications for the reactivity and catalytic activity of cluster carbonyls. Additionally, a new approach to the fluxionality of these species, based on the idea that carbonyl mobility may occur by rearrangements of the entire ligand polyhedron, has led to new insights into the behaviour of a number of systems.  相似文献   

8.
Metal carbonyl clusters possess a complicated chemistry that is only beginning to be understood. One of the main current goals in this area is thus an understanding of their reactivity. This article describes the syntheses and reactions of clusters that contain metal carbonyl fragments bridged by a main-group element. But what is the sense of making such clusters still more complicated by the incorporation of main-group elements? The example of μ3-bridged carbonyl clusters will serve to show that the main-group element plays an important role in the study of reaction paths; it holds the metal carbonyl fragments together even when the bonds between them are broken in the course of a reaction. Trinuclear μ3-bridged clusters prove to be small enough to allow the analysis of typical cluster reactions (such as the reversible breaking of metal-metal bonds) in terms of single reaction steps. They are also large enough to provide surprises by their multifaceted reactivity. It will be shown that a detailed study of trinuclear RX-bridged metal carbonyl clusters (X ? N, P, As, Sb, Bi)—a very small part of carbonyl cluster chemistry—can lead to a better understanding of the general reaction principles involved.  相似文献   

9.
Studies using density functional theory (DFT) at the hybrid B3LYP level indicate that the relative energies of structures with three-fold, four-fold, and five-fold symmetry for centered 10-vertex bare germanium clusters of the general type M@Ge(10) (z) depend on the central metal atom M and the skeletal electron count. For M@Ge(10) clusters with 20 skeletal electrons the DFT results agree with experimental data on the isoelectronic centered 10-vertex bare metal clusters. Thus the lowest energy structure for Ni@Ge(10), isoelectronic with the known Ni@In(10) (10-), is a C(3v) polyhedron derived from the tetracapped trigonal prism. However, Zn@Ge(10) (2+) is isoelectronic with the known cluster Zn@In(10) (8-), which has the lowest energy structure, a D(4d) bicapped square antiprism. For the clusters Ni@Ge(10) (2-), Cu@Ge(10) (-), and Zn@Ge(10) that have 22 skeletal electrons the lowest energy structures are the D(4d) bicapped square antiprism predicted by the Wade-Mingos rules. For the clusters Ni@Ge(10) (4-), Cu@Ge(10) (3-), and Zn@Ge(10) (2-) that have 24 skeletal electrons the lowest energy structures are C(3v) polyhedra with 10 triangular faces and 3 quadrilateral faces derived from a tetracapped trigonal prism by extreme lengthening of the edges of the capped triangular face of the underlying trigonal prism. For the clusters Cu@Ge(10) (5-) and Zn@Ge(10) (4-) that have 26 skeletal electrons the lowest energy structures are the D(5d) pentagonal antiprisms predicted by the Wade-Mingos rules and the C(3v) tetracapped trigonal prism as a somewhat higher energy structure. However, for the isoelectronic Ni@Ge(10) (6-) the relative energies of these two structure types are reversed so that the C(3v) tetracapped trigonal prism becomes the global minimum. The effects of electron count on the geometries of the D(5d) pentagonal prism and D(4d) bicapped square antiprism centered metal cluster structures are consistent with the bonding/antibonding characteristics of the corresponding HOMO and LUMO frontier molecular orbitals.  相似文献   

10.
The development of transition metal cluster chemistry is traced from the early discoveries of metal-metal bonded systems through to some recent developments made in the area of high nuclearity osmium and rutherium cluster carbonyls. Emphasis is placed on developments made in the physical techniques used to establish the structures of the cluster complexes in the solid state and in solution. Recent developments in synthetic methods which lead to “rational” cluster synthesis are described, and the electron counting rules used to rationalise the observed structures of carbonyl clusters are reviewed. New high nuclearity cluster structures are described, and emphasis is placed on the ability of these systems to undergo reversible redox chemistry without the metal frameworks rearranging. This contrasts the situation observed for low nuclearity clusters, and illustrates the potential of the higher nuclearity clusters to act as electron sinks.  相似文献   

11.
Transition metal–mercury complexes were among the first compounds of study for the concept of direct metal–metal bonding which was established more than three decades ago. Since then, a large number of such systems have been synthesized and studied. The fact that mercury is readily attached to a large variety of main group or transition metals has stimulated its use as a general building block in the systematic synthesis of mixed-metal clusters. The past decade has witnessed a rapid expansion of bimetallic cluster chemistry in which species containing mercury have played a prominent role, and which has led to the discovery of many unprecedented cluster structures and reactions. In particular, the ability of mercury to form multicenter metal–metal bonds with polynuclear cluster fragments has substantially extended its coordination chemistry which was thus far dominated by simple linear structural arrangements. Although certain structural motifs are found to be common to many of the transition metal–mercury clusters investigated to date and thus enable a relatively systematic synthetic approach, the multitude of surprising discoveries has kept the interest in the chemistry of the element itself alive. The recent discovery of the redox and photochemical reactivity of some of these systems has opened up an exciting and promising area of cluster research. Its significance for the synthetic methodology lies in the fact that the increasing redox activity of molecular carbonyl clusters on going to higher nuclearities appears to set a limit on the size of metal frameworks attainable by the standard preparative methods. On the other hand, their potential use as photochromes or redox mediaters in coupled electron-transfer reactions provides an additional stimulus for future studies in this field.  相似文献   

12.
Binuclear transition metal carbonyl clusters serve as the simplest models in understanding metal-metal and ligand bonding that are important organometallic chemistry catalysis. Binuclear first row transition metal carbonyl ions are produced via a pulsed laser vaporization/supersonic expansion cluster ion source in the gas phase. These ions are studied by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching frequency region. Density functional theory calculations have been performed on the geometric structures and vibrational spectra of the carbonyl ions. Their geometric and electronic structures are determined by comparison of the experimental IR spectra with the simulated spectra. The structure and the metal-metal and metal-CO bonding of both saturated and unsaturated homonuclear as well as heteronuclear carbonyl cluster cations and anions are discussed.  相似文献   

13.
The magnetic properties of molecular metal cluster compounds resemble those of small metal particles in the metametallic size regime. Even-electron metal carbonyl clusters with 10 or more metal atoms are paramagnetic, because their frontier orbital separations of less than 1 eV lead to high-spin electronic configurations. The rhodium cluster [Rh17S2(CO)32]3? gives EPR below 200 K withg=2.04, the first example of this type of paramagnetism in an even-electron carbonyl cluster of this 4d metal. Its spectral parameters are compared with those of osmium carbonyl clusters and some significant differences highlighted. Attempts have also been made to generate radical cations from lower-nuclearity, diamagnetic molecular clusters such as Rh6(CO)16 by chemical oxidation in sulphuric acid. An EPR active species (g=2.09) believed to be [Rh6(CO)16]+ has been obtained.  相似文献   

14.
在自制的仪器上以冲激光溅射铁、钌、锇的三核羰基原子簇化合物。由原位质谱观察和分析溅射产生的正负离子。比较了解离碎片及分布发现羰基锇原子簇化合物具有特殊的结构稳定性。它们不仅具有很强的金属键,而且锇与羰基分子还形成了很强的配位键。  相似文献   

15.
本文总结了六种钼—铁混合金属羰基原子簇化合物的合成、结构类型和电子计数。从这些具有不同骨架构型的簇合物可以看出,主族元素—主族元素之间的相互作用对这类原子簇化合物的骨架构型变化和稳定性有着重要作用。  相似文献   

16.
A model has been developed for describing the aggregation process of two fractal clusters under quiescent conditions. The model uses the approach originally proposed by Smoluchowski for the diffusion-limited aggregation of two spherical particles but accounts for the possibility of interpenetration between the fractal clusters. It is assumed that when a cluster diffuses toward a reference cluster their center-to-center distance can be smaller than the sum of their radii, and their aggregation process is modeled using a diffusion-reaction equation. The reactivity of the clusters is assumed to depend on the reactivity and number of their particles involved in the aggregation event. The model can be applied to evaluate the aggregation rate constant as a function of the prevailing operating conditions by simply changing the value of the particle stability ratio, without any a priori specification of a diffusion-limited cluster aggregation, reaction-limited cluster aggregation, or transition regime. Furthermore, the model allows one to estimate the structure properties of the formed cluster after the aggregation, based on the computed distance between the aggregating clusters in the final cluster.  相似文献   

17.
The effect of aggregation on the optical properties of nanometer-sized particles is studied. It is shown that for small noble metal clusters as well as for pigments of Fe2O3, TiN, or ZrN, the aggregation leads to changes in the color of the colloidal systems which are caused by electromagnetic coupling among the clusters in the aggregates. The model of interacting particles is shown to be helpful also for interpretation of optical properties of organic dyes with incorporated metal clusters and for interpretation of the reflectance of magnetooptical cluster systems. For soot particles it is shown that scattering and absorption are enhanced over the whole visible spectral region compared to isolated carbonaceous clusters. Finally, it is shown that the model of interacting clusters can also be applied for data interpretation in scanning near-field optical microscopy.  相似文献   

18.
Metal carbonyls react on metal oxide surfaces to give a wide range of structures analogous to those of known compounds. The reactions leading to formation of surface-bound metal carbonyls are explained by known molecular organometallic chemistry and the functional group chemistry of the surfaces. The reaction classes include formation of acid-base adducts as the oxygen of a carbonyl group donates an electron pair to a Lewis acidic center; nucleophilic attack at CO ligands by basic surface hydroxyl groups or O2? ions; ion-pair formation by deprotonation of hydrido carbonyls to give carbonylate ions; interaction of bifunctional complexes with surface acid-base pair sites such as [Mg2⊕O2?]; and oxidative addition of surface hydroxyl groups to metal clusters. The reactions of surface-bound organometallic species include redox condensation and cluster formation on basic surfaces (paralleling the reactions in basic solution) as well as oxidation of mononuclear metal complexes and oxidative fragmentation of metal clusters by reaction with surface hydroxyl groups. Most supported metal carbonyls are unstable at high temperatures, but some, including osmium carbonyl cluster anions on the basic MgO surface, are strongly stabilized in the presence of CO and are precursors of catalysts for CO hydrogenation at 550 K.  相似文献   

19.
利用激光溅射产生了第IV主族 (硅、锗、锡、铅 ) /磷二元团簇正负离子 ,用飞行时间质谱研究了团簇离子的组成规律和激光光解产物 .研究表明二元团簇稳定性受团簇电子结构和几何结构的影响 ,但随着第IV主族元素自上而下 ,几何结构对团簇稳定性的作用越来越大 .在二元团簇离子中存在两类幻数团簇 :一类可以用Wade规则解释 ,其中磷原子或者充当给电子配体结合在第IV主族原子构成的团簇骨架外 ,或者直接参与团簇骨架的构成 ;另一类则与稳定的第IV主族中性团簇 (或磷中性团簇 )是等电子体 .利用从头计算和Wade规则对幻数团簇的结构和价键进行了分析 .  相似文献   

20.
Mossbauer spectra of nine transition metal carbido carbonyl clusters containing cobalt and rhodium atoms along with iron atoms were measured and analyzed. It is shown that the spectra, depending on cluster composition, are a superposition of different number of quadrupole doublets (up to four), for which the chemical shift varies from 0.12 to 0.34 mm/sec and the quadrupole splitting varies from 0.15 to 1.35 mm/sec. The relationship between the spectrum shape and parameters and the cluster structure, in particular, the coordination number of the iron atoms is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号