首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Reactions of Au(+)((1)S) and Au(+)((3)D) with CH(3)F and CH(3)Cl have been carried out in a drift cell in He at a pressure of 3.5 Torr at both room temperature and reduced temperatures in order to explore the influence of the electronic state of the metal on reaction outcomes. State-specific product channels and overall two-body rate constants were identified using electronic state chromatography. These results indicate that Au(+)((1)S) reacts to yield an association product in addition to AuCH(2)(+) in parallel steps with both neutrals. Product distributions for association vs HX elimination were determined to be 79% association/21% HX elimination for X = F and 50% association/50% HX elimination when X = Cl. Reaction of Au(+)((3)D) with CH(3)F also results in HF elimination, which in this case is thought to produce (3)AuCH(2)(+). With CH(3)Cl, Au(+)((3)D) reacts to form AuCH(3)(+) and CH(3)Cl(+) in parallel steps. An additional product channel initiated by Au(+)((3)D) is also observed with both methyl halides, which yields CH(2)X(+) as a higher-order product. Kinetic measurements indicate that the reaction efficiency for both Au(+) states is significantly greater with CH(3)Cl than with CH(3)F. The observed two-body rate constant for depletion of Au(+)((1)S) by CH(3)F represents less than 5% of the limiting rate constant predicted by the average dipole orientation model (ADO) at room temperature and 226 K, whereas CH(3)Cl reacts with Au(+)((1)S) at the ADO limit at both room temperature and 218 K. Rate constants for depletion of Au(+)((3)D) by CH(3)F and CH(3)Cl were measured at 226 and 218 K respectively, and indicate that Au(+)((3)D) is consumed at approximately 2% of the ADO limit by CH(3)F and 69% of the ADO limit by CH(3)Cl. Product formation and overall efficiency for all four reactions are consistent with previous experimental results and available theoretical models.  相似文献   

2.
The reactions of gas-phase Cu(+)((1)S) and Cu(+)((3)D) with CF(3)X and CH(3)X (X = Cl, Br, and I) have been examined experimentally using the drift cell technique at 3.5 Torr in He at room temperature. State-specific product channels and overall bimolecular rate constants for depletion of the two Cu(+) states were determined using electronic state chromatography. The results showed that Cu(+)((1)S) participates exclusively in association with all of these neutrals, whereas, depending on the neutral, Cu(+)((3)D) initiates up to three bimolecular processes, resulting in the formation of CuX(+), CuC(H/F)(3)(+), and C(H/F)(3)X(+). Possible structures for the singlet association products were explored using density functional methods. These calculations indicated that Cu(+) preferentially associates with the labile halogen (Cl, Br, I) with all neutrals except CF(3)Cl, for which a "backside" geometry occurs in which Cu(+)((1)S) is weakly bound to the -CF(3) end of the molecule. All products observed on the triplet reaction surface can be understood in terms of either known or calculated thermochemical requirements. Product distributions and overall reaction efficiencies for C-X bond activation (X = Br, I) through Cu(+)((3)D) suggest that the orientation of the neutral dipole has little or no effect in controlling access to specific product channels. Likewise, second-order rate constants for reactions with X = Br and I indicate efficient depletion of Cu(+)((3)D) and do not exhibit the dramatic variations in reaction efficiency previously observed with CH(3)Cl and CF(3)Cl. These results suggest that C-X bond activation proceeds through a bond-insertion mechanism as opposed to direct abstraction.  相似文献   

3.
The branching ratios and rate coefficients have been measured at 298 K for the reactions between CHCl2F, CHClF2, and CH2ClF and the following cations (with recombination energies in the range 6.3-21.6 eV); H3O+, SFx+ (x = 1-5), CFy+ (y = 1-3), NO+, NO2+, O2+, Xe+, N2O+, O+, CO2+, Kr+, CO+, N+, N2+, Ar+, F+, and Ne+. The majority of the reactions proceed at the calculated collisional rate, but the reagent ions SF3+, NO+, NO2+, and SF2+ do not react. Surprisingly, although all of the observed product channels are calculated to be endothermic, H3O+ does react with CHCl2F. On thermochemical grounds, Xe+ appears to react with these molecules only when it is in its higher-energy 2P1/2 spin-orbit state. In general, most of the reactions form products by dissociative charge transfer, but some of the reactions of CH2ClF with the lower-energy cations produce the parent cation in significant abundance. The branching ratios produced in this study and by threshold photoelectron-photoion coincidence spectroscopy agree reasonably well over the energy range 11-22 eV. In about one-fifth of the large number of reactions studied, the branching ratios are in excellent agreement and appreciable energy resonance between an excited state and the ground state of the ionized neutral exists, suggesting that these reactions proceed exclusively by a long-range charge-transfer mechanism. Upper limits for the enthalpy of formation at 298 K of SF4Cl (-637 kJ mol-1), SClF (-28 kJ mol-1), and SHF (-7 kJ mol-1) are determined.  相似文献   

4.
The infrared spectra of CH3Cl + H2O isolated in solid neon at low temperatures have been investigated. The CH3Cl + H2O system is remarkable because of its propensity to form CH3Cl:H2O and CH3Cl:(H2O)n (n > or = 2) complexes. We focus here on the CH3Cl:H2O species. Low concentration studies (0.01-0.5%) and subsequent annealing lead to formation of the 1:1 CH3Cl:H2O complex with O-H. . .Cl-C or O. . .H-C intermolecular hydrogen bonds. Vibrational modes of this complex have been detected. In addition, spectra of D2O + CH3Cl and HDO + CH3Cl have also been recorded. A detailed vibrational analysis of partially deuterated species shows that HDO is exclusively D bonded to CH3Cl. This is a consequence of the preference for HDO to form a deuterium bonding complex rather than a hydrogen bonding one.  相似文献   

5.
A laser flash photolysis-resonance fluorescence technique has been employed to investigate the reactions of atomic chlorine with three alkyl bromides (R-Br) that have been identified as short-lived atmospheric constituents with significant ozone depletion potentials (ODPs). Kinetic data are obtained through time-resolved observation of the appearance of atomic bromine that is formed by rapid unimolecular decomposition of radicals generated via abstraction of a β-hydrogen atom. The following Arrhenius expressions are excellent representations of the temperature dependence of rate coefficients measured for the reactions Cl + CH(3)CH(2)Br (eq 1 ) and Cl + CH(3)CH(2)CH(2)Br (eq 2 ) over the temperature range 221-436 K (units are 10(-11) cm(3) molecule(-1) s(-1)): k(1)(T) = 3.73?exp(-378/T) and k(2)(T) = 5.14?exp(+21/T). The accuracy (2σ) of rate coefficients obtained from the above expressions is estimated to be ±15% for k(2)(T) and +15/-25% for k(1)(T) independent of T. For the relatively slow reaction Cl + CH(2)BrCH(2)Br (eq 3 ), a nonlinear ln k(3) vs 1/T dependence is observed and contributions to observed kinetics from impurity reactions cannot be ruled out; the following modified Arrhenius expression represents the temperature dependence (244-569 K) of upper-limit rate coefficients that are consistent with the data: k(3)(T) ≤ 3.2 × 10(-17)T(2)?exp(-184/T) cm(3) molecule(-1) s(-1). Comparison of Br fluorescence signal strengths obtained when Cl removal is dominated by reaction with R-Br with those obtained when Cl removal is dominated by reaction with Br(2) (unit yield calibration) allows branching ratios for β-hydrogen abstraction (k(ia)/k(i), i = 1,2) to be evaluated. The following Arrhenius-type expressions are excellent representations of the observed temperature dependences: k(1a)/k(1) = 0.85?exp(-230/T) and k(2a)/k(2) = 0.40 exp(+181/T). The accuracy (2σ) of branching ratios obtained from the above expressions is estimated to be ±35% for reaction 1 and ±25% for reaction 2 independent of T. It appears likely that reactions 1 and 2 play a significant role in limiting the tropospheric lifetime and, therefore, the ODP of CH(3)CH(2)Br and CH(3)CH(2)CH(2)Br, respectively.  相似文献   

6.
The triangular cluster [Mo3Se4(H2O)9]4+ reacts with Cu turnings to give a new heterometallic cuboidal cluster [Mo3CuSe4(H2O)10]4+(purple; UV/Vis lambda(epsilon): 352(3907), 509(2613)). The reaction of [Mo3Se4(H2O)9]4+ with CuCl afforded the 5+ cube [Mo3CuSe4(H2O)10]5+(red; UV/Vis lambda(epsilon): 356(5406), 500(3477)). In contrast, [W3Se4(H2O)9]4+ both with Cu and CuCl gives the 5+ cube, [W3CuSe4(H2O)10]5+(yellow-green; UV/Vis lambda(epsilon): 312(5327), 419(3256) and 628(680)). Cyclic voltammetry of [M3CuQ4(H2O)10]5+ in 2 M HCl (M = Mo, W; Q = S, Se) shows a reversible one-electron reduction wave for the Mo clusters, but no reduction occurs for the W clusters prior to H+ reduction. In HCl solutions, Cl is coordinated to the Cu site of the clusters, alongside some less extensive coordination to Mo and W, and for [W3(CuCl)S4(H2O)6Cl3]+, isolated as the supramolecular adduct with cucurbit[6]uril, [W3(CuCl)S4(H2O)6Cl3]2Cl2 x C36H36N24O12 x 12H2O, the crystal structure was determined (Cu-W 2.856(4) angstroms, W-W 2.7432(15) angstroms, Cu-Cl 2.167(13) angstroms).  相似文献   

7.
Selective vibrational excitation controls the competition between C-H and C-D bond cleavage in the reaction of CH(3)D with Cl, which forms either HCl + CH(2)D or DCl + CH(3). The reaction of CH(3)D molecules with the first overtone of the C-D stretch (2nu(2)) excited selectively breaks the C-D bond, producing CH(3) exclusively. In contrast, excitation of either the symmetric C-H stretch (nu(1)), the antisymmetric C-H stretch (nu(4)), or a combination of antisymmetric stretch and CH(3) umbrella bend (nu(4) + nu(3)) causes the reaction to cleave only a C-H bond to produce solely CH(2)D. Initial preparation of C-H stretching vibrations with different couplings to the reaction coordinate changes the rate of the H-atom abstraction reaction. Excitation of the symmetric C-H stretch (nu(1)) of CH(3)D accelerates the H-atom abstraction reaction 7 times more than excitation of the antisymmetric C-H stretch (nu(4)) even though the two lie within 80 cm(-1) of the same energy. Ab initio calculations and a simple theoretical model help identify the dynamics behind the observed mode selectivity.  相似文献   

8.
9.
A dual-level direct dynamic method is employed to study the reaction mechanisms of CF3CH2OCHF2 (HFE-245fa2; HFE-245mf) with the OH radicals and Cl atoms. Two hydrogen abstraction channels and two displacement processes are found for each reaction. For further study, the reaction mechanisms of its products (CF3CH2OCF2 and CF3CHOCHF2) and parent ether CH3CH2OCH3 with OH radical are investigated theoretically. The geometries and frequencies of all the stationary points and the minimum energy paths (MEPs) are calculated at the B3LYP/6-311G(d,p) level. The energetic information along the MEPs is further refined at the G3(MP2) level of theory. For reactions CF3CH2OCHF2 + OH/Cl, the calculation indicates that the hydrogen abstraction from --CH2-- group is the dominant reaction channel, and the displacement processes may be negligible because of the high barriers. The standard enthalpies of formation for the reactant CF3CH2OCHF2, and two products CF3CH2OCHF2 and CF3CHOCHF2 are evaluated via group-balanced isodesmic reactions. The rate constants of reactions CF3CH2OCHF2 + OH/Cl and CH3CH2OCH3 + OH are estimated by using the variational transition state theory over a wide range of temperature (200-2000 K). The agreement between the theoretical and experimental rate constants is good in the measured temperature range. From the comparison between the rate constants of the reactions CF3CH2OCHF2 and CH3CH2OCH3 with OH, it is shown that the fluorine substitution decreases the reactivity of the C--H bond.  相似文献   

10.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

11.
The kinetics and mechanism of the reactions of Cl atoms and OH radicals with CH3CH2CHO were investigated at room temperature using two complementary techniques: flash photolysis/UV absorption and continuous photolysis/FTIR smog chamber. Reaction with Cl atoms proceeds predominantly by abstraction of the aldehydic hydrogen atom to form acyl radicals. FTIR measurements indicated that the acyl forming channel accounts for (88 +/- 5)%, while UV measurements indicated that the acyl forming channel accounts for (88 +/- 3)%. Relative rate methods were used to measure: k(Cl + CH3CH2CHO) = (1.20 +/- 0.23) x 10(-10); k(OH + CH3CH2CHO) = (1.82 +/- 0.23) x 10(-11); and k(Cl + CH3CH2C(O)Cl) = (1.64 +/- 0.22) x 10(-12) cm3 molecule(-1) s(-1). The UV spectrum of CH3CH2C(O)O2, rate constant for self-reaction, and rate constant for cross-reaction with CH3CH2O2 were determined: sigma(207 nm) = (6.71 +/- 0.19) x 10(-18) cm2 molecule(-1), k(CH3CH2C(O)O2 + CH3CH2C(O)O2) = (1.68 +/- 0.08) x 10(-11), and k(CH3CH2C(O)O2 + CH3CH2O2) = (1.20 +/- 0.06) x 10(-11) cm3 molecule(-1) s(-1), where quoted uncertainties only represent 2sigma statistical errors. The infrared spectrum of C2H5C(O)O2NO2 was recorded, and products of the Cl-initiated oxidation of CH3CH2CHO in the presence of O2 with, and without, NO(x) were identified. Results are discussed with respect to the atmospheric chemistry of propionaldehyde.  相似文献   

12.
The potential energy surfaces of H-atom reactions with CH(3)CH(2)O and CH(3)CHOH, two major radicals in the decomposition and oxidation of ethanol, have been studied at the CCSD(T)/6-311+G(3df,2p) level of theory with geometric optimization carried out at the BH&HLYP/6-311+G(3df,2p) level. The direct hydrogen abstraction channels and the indirect association/decomposition channels from the chemically activated ethanol molecule have been considered for both reactions. The rate constants for both reactions have been calculated at 100-3000 K and 10(-4) Torr to 10(3) atm Ar pressure by microcanonical VTST/RRKM theory with master equation solution for all accessible product channels. The results show that the major product channel of the CH(3)CH(2)O + H reaction is CH(3) + CH(2)OH under atmospheric pressure conditions. Only at high pressure and low temperature, the rate constant for CH(3)CH(2)OH formation by collisonal deactivation becomes dominant. For CH(3)CHOH + H, there are three major product channels; at high temperatures, CH(3)+CH(2)OH production predominates at low pressures (P < 100 Torr), while the formation of CH(3)CH(2)OH by collisional deactivation becomes competitive at high pressures and low temperatures (T < 500 K). At high temperatures, the direct hydrogen abstraction reaction producing CH(2)CHOH + H(2) becomes dominant. Rate constants for all accessible product channels in both systems have been predicted and tabulated for modeling applications. The predicted value for CH(3)CHOH + H at 295 K and 1 Torr pressure agrees closely with available experimental data. For practical modeling applications, the rate constants for the thermal unimolecular decomposition of ethanol giving key accessible products have been predicted; those for the two major product channels taking place by dehydration and C-C breaking agree closely with available literature data.  相似文献   

13.
The pulsed field ionization-photoelectron (PFI-PE) spectrum of bromochloromethane (CH2BrCl) in the region of 85,320-88,200 cm-1 has been measured using vacuum ultraviolet laser. The vibrational structure resolved in the PFI-PE spectrum was assigned based on ab initio quantum chemical calculations and Franck-Condon factor predictions. At energies 0-1400 cm-1 above the adiabatic ionization energy (IE) of CH2BrCl, the Br-C-Cl bending vibration progression (nu1+=0-8) of CH2BrCl+ is well resolved and constitutes the major structure in the PFI-PE spectrum, whereas the spectrum at energies 1400-2600 cm-1 above the IE(CH2BrCl) is found to exhibit complex vibrational features, suggesting perturbation by the low lying excited CH2BrCl+(A 2A") state. The assignment of the PFI-PE vibrational bands gives the IE(CH2BrCl)=85,612.4+/-2.0 cm-1 (10.6146+/-0.0003 eV) and the bending frequencies nu1+(a1')=209.7+/-2.0 cm-1 for CH2BrCl+(X2A'). We have also examined the dissociative photoionization process, CH2BrCl+hnu-->CH2Cl++Br+e-, in the energy range of 11.36-11.57 eV using the synchrotron based PFI-PE-photoion coincidence method, yielding the 0 K threshold or appearance energy AE(CH2Cl+)=11.509+/-0.002 eV. Combining the 0 K AE(CH2Cl+) and IE(CH2BrCl) values obtained in this study, together with the known IE(CH2Cl), we have determined the 0 K bond dissociation energies (D0) for CH2Cl+-Br (0.894+/-0.002 eV) and CH2Cl-Br (2.76+/-0.01 eV). We have also performed CCSD(T, full)/complete basis set (CBS) calculations with high-level corrections for the predictions of the IE(CH2BrCl), AE(CH2Cl+), IE(CH2Cl), D0(CH2Cl+-Br), and D0(CH2Cl-Br). The comparison between the theoretical predictions and experimental determinations indicates that the CCSD(T, full)/CBS calculations with high-level corrections are highly reliable with estimated error limits of <17 meV.  相似文献   

14.
The hydrogen or deuterium atom abstraction reactions between Cl((2)P(3/2)) and methane, or its deuterated analogues CD(4) and CH(2)D(2), have been studied at mean collision energies around 0.34 eV. The experiments were performed in a coexpansion of molecular chlorine and methane in helium, with the atomic Cl reactants generated by polarized laser photodissociation of Cl(2) at 308 nm. The Cl-atom reactants and the methyl radical products were detected using (2+1) resonantly enhanced multiphoton ionization, coupled with velocity-map ion imaging. Analysis of the ion images reveals that in single-beam experiments of this type, careful consideration must be given to the spread of reagent velocities and collision energies. Using the reactions of Cl with CH(4), CD(4), and CH(2)D(2), as examples, it is shown that the data can be fitted well if the reagent motion is correctly described, and the angular scattering distributions can be obtained with confidence. New evidence is also provided that the CD(3) radicals from the Cl+CD(4) reaction possess significant rotational alignment under the conditions of the present study. The results are compared with previous experimental and theoretical works, where these are available.  相似文献   

15.
The title reaction is investigated by co-expanding a mixture of Cl2 and CH2D2 into a vacuum chamber and initiating the reaction by photolyzing Cl2 with linearly polarized 355 nm light. Excitation of the first C-H overtone of CH2D2 leads to a preference for hydrogen abstraction over deuterium abstraction by at least a factor of 20, whereas excitation of the first C-D overtone of CH2D2 reverses this preference by at least a factor of 10. Reactions with CH2D2 prepared in a local mode containing two quanta in one C-H oscillator /2000>- or in a local mode containing one quantum each in two C-H oscillators /1100> lead to products with significantly different rotational, vibrational, and angular distributions, although the vibrational energy for each mode is nearly identical. The Cl+CH2D2/2000>- reaction yields methyl radical products primarily in their ground state, whereas the Cl+CH2D2/1100> reaction yields methyl radical products that are C-H stretch excited. The HCl(v=1) rotational distribution from the Cl+CH2D2/2000>- reaction is significantly hotter than the HCl(v=1) rotational distribution from the Cl+CH2D2/1100> reaction, and the HCl(v=1) differential cross-section (DCS) of the Cl+CH2D2/2000>- reaction is more broadly side scattered than the HCl(v=1) DCS of the Cl+CH2D2/1100> reaction. The results can be explained by a simple spectator model and by noting that the /2000>- mode leads to a wider cone of acceptance for the reaction than the /1100> mode. These measurements represent the first example of mode selectivity observed in a differential cross section, and they demonstrate that vibrational excitation can be used to direct the reaction pathway of the Cl+CH2D2 reaction.  相似文献   

16.
Radical-radical reactions involving chlorinated methyl radicals are particularly important in the mechanism of combustion of chlorinated hydrocarbons. Yet, they are usually difficult to study experimentally. In this paper, four chloride-related radical-radical reactions, i.e., CH3+CH(3-n)Cln (n = 1, 2, 3) and CH3+CCl2, are theoretically studied for the first time by means of the Gaussian-3//B3LYP potential energy surface survey combined with the master equation study over a wide range of temperatures and pressures. Our calculated results show that the three CH3+CH(3-n)Cln reactions can barrierlessly generate the former two kinetically allowed products P1 H(2)C=C(H)(3-n)Cl(n-1)+HCl and P2 CH3CH(3-n)Cl(n-1)+Cl with the very high predominance of P1 over P2. For the CH3 reaction with the biradical CCl2, which inevitably takes place during the CH3+CCl3 reaction and yet has never been studied experimentally or theoretically, H(2)C=CCl2+H and H(2)C=C(H)Cl+Cl are predicted to be the respective major and minor products. The results are compared with the recent laser photolysis/photoionization mass spectroscopy study on the CH3+CH(3-n)Cln (n = 1, 2, 3) reactions. The predicted rate constants and product branching ratios of the CH3+CCl2 reaction await future experimental verification.  相似文献   

17.
The reaction of triplet methylene with methanol is a key process in alcohol combustion but surprisingly this reaction has never been studied. The reaction mechanism is investigated by using various high-level ab initio methods, including the complete basis set extrapolation (CBS-QB3 and CBS-APNO), the latest Gaussian-n composite method (G4), and the Weizmann-1 method (W1U). A total of five product channels and six transition states are found. The dominant mechanism is direct hydrogen abstraction, and the major product channel is CH(3) + CH(3)O, involving a weak prereactive complex and a 7.4 kcal/mol barrier. The other hydrogen abstraction channel, CH(3) + CH(2)OH, is less important even though it is more exothermic and involves a similar barrier height. The rate coefficients are predicted in the temperature range 200-3000 K. The tunneling effect and the hindered internal rotational freedoms play a key role in the reaction. Moreover, the reaction shows significant kinetic isotope effect.  相似文献   

18.
A laser flash photolysis-resonance fluorescence technique has been employed to determine absolute rate coefficients for the CH3F + Cl reaction in N2 bath gas in the temperature range of 200-700 K and pressure range of 33-133 hPa. The data were fitted to a modified Arrhenius expression k(T) = 1.14 x 10(-12) x (T/298)2.26 exp{-313/T}. The OH and Cl reaction rates of (13)CH3F and CD3F have been measured by long-path FTIR spectroscopy relative to CH3F at 298 +/- 2 K and 1013 +/- 10 hPa in purified air. The FTIR spectra were fitted using a nonlinear least-squares spectral fitting method including line data from the HITRAN database and measured infrared spectra as references. The relative reaction rates defined by alpha = k(light)/k(heavy) were determined to be k(OH+CH3F)/k(OH+CD3F) = 4.067 +/- 0.018, k(OH+CH3F)/k(OH+(13)CH3F) = 1.067 +/- 0.006, k(Cl+CH3F)/k(Cl+CD3F) = 5.11 +/- 0.07, and k(Cl+CH3F)/k(Cl+(13)CH3F) = 1.016 +/- 0.006. The carbon-13 and deuterium kinetic isotope effects in the OH and Cl reactions of CH3F have been further investigated by quantum chemistry methods and variational transition state theory.  相似文献   

19.
Direct variable reaction coordinate transition state theory (VRC-TST) rate coefficients are reported for the (3)CH(2) + OH, (3)CH(2) + (3)CH(2), and (3)CH(2) + CH(3) barrierless association reactions. The predicted rate coefficient for the (3)CH(2) + OH reaction (approximately 1.2 x 10(-10) cm(3) molecule(-1) s(-1) for 300-2500 K) is 4-5 times larger than previous estimates, indicating that this reaction may be an important sink for OH in many combustion systems. The predicted rate coefficients for the (3)CH(2) + CH(3) and (3)CH(2) + (3)CH(2) reactions are found to be in good agreement with the range of available experimental measurements. Product branching in the self-reaction of methylene is discussed, and the C(2)H(2) + 2H and C(2)H(2) + H2 products are predicted in a ratio of 4:1. The effect of the present set of rate coefficients on modeling the secondary kinetics of methanol decomposition is briefly considered. Finally, the present set of rate coefficients, along with previous VRC-TST determinations of the rate coefficients for the self-reactions of CH(3) and OH and for the CH(3) + OH reaction, are used to test the geometric mean rule for the CH(3), (3)CH(2), and OH fragments. The geometric mean rule is found to predict the cross-combination rate coefficients for the (3)CH(2) + OH and (3)CH(2) + CH(3) reactions to better than 20%, with a larger (up to 50%) error for the CH(3) + OH reaction.  相似文献   

20.
利用密度泛函理论直接动力学方法研究了反应CH3OCF2CF2OCH3+Cl的微观机理和动力学性质. 在BB1K/6-31+G(d,p)水平上获得了反应的势能面信息, 计算中考虑了反应物CH3OCF2CF2OCH3两个稳定构象(SC1和SC2)的氢提取通道和取代反应通道. 利用改进的正则变分过渡态理论结合小曲率隧道效应(ICVT/SCT)计算了各氢提取通道的速率常数, 进而根据Boltzmann配分函数得到总包反应速率常数(kT)以及每个构象对总反应的贡献. 结果表明296 K温度下计算的kT(ICVT/SCT)值与已有实验值符合得很好. 由于缺乏其他温度速率常数的实验数据, 我们预测了该反应在200-2000 K温度区间内反应速率常数的三参数表达式: kT=0.40×10-14T1.05exp(-206.16/T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号