首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, sliding and transversal motions on the boundary in the periodically driven, discontinuous dynamical system is investigated. The simple inclined straight line boundary in phase space is considered as a control law for such a dynamical system to switch. The normal vector field for a flow switching on the separation boundary is adopted to develop the analytical conditions, and the corresponding transversality conditions of a flow to the boundary are obtained. The conditions of sliding and grazing flows to the separation boundary are presented as well. Using mapping structures, periodic motions of such a discontinuous system are predicted, and the corresponding local stability and bifurcation analysis of the periodic motion are carried out. Numerical illustrations of periodic motions with and without sliding on the boundary are given. The local stability analysis cannot provide the proper prediction of the sliding and grazing motions in discontinuous dynamical systems. Therefore, the normal vector fields of periodic flows are presented, and the normal vector fields on the switching boundary points give the analytical criteria for sliding and transversality of motions.  相似文献   

2.
We study general dynamical and topological behaviors of minimal sets in skew-product circle flows in both continuous and discrete settings, with particular attentions paying to almost periodically forced circle flows. When a circle flow is either discrete in time and unforced (i.e., a circle map) or continuous in time but periodically forced, behaviors of minimal sets are completely characterized by classical theory. The general case involving almost periodic forcing is much more complicated due to the presence of multiple forcing frequencies, the topological complexity of the forcing space, and the possible loss of mean motion property. On one hand, we will show that to some extent behaviors of minimal sets in an almost periodically forced circle flow resemble those of Denjoy sets of circle maps in the sense that they can be almost automorphic, Cantorian, and everywhere non-locally connected. But on the other hand, we will show that almost periodic forcing can lead to significant topological and dynamical complexities on minimal sets which exceed the contents of Denjoy theory. For instance, an almost periodically forced circle flow can be positively transitive and its minimal sets can be Li-Yorke chaotic and non-almost automorphic. As an application of our results, we will give a complete classification of minimal sets for the projective bundle flow of an almost periodic, sl(2,R)-valued, continuous or discrete cocycle.Continuous almost periodically forced circle flows are among the simplest non-monotone, multi-frequency dynamical systems. They can be generated from almost periodically forced nonlinear oscillators through integral manifolds reduction in the damped cases and through Mather theory in the damping-free cases. They also naturally arise in 2D almost periodic Floquet theory as well as in climate models. Discrete almost periodically forced circle flows arise in the discretization of nonlinear oscillators and discrete counterparts of linear Schrödinger equations with almost periodic potentials. They have been widely used as models for studying strange, non-chaotic attractors and intermittency phenomena during the transition from order to chaos. Hence the study of these flows is of fundamental importance to the understanding of multi-frequency-driven dynamical irregularities and complexities in non-monotone dynamical systems.  相似文献   

3.
We study a weakly perturbed van-der-Pol dynamical system and the structure of its trajectory behavior via the modern symplectic theory. Based on a Samoilenko–Prykarpatsky method of studying integral submanifolds of weakly perturbed completely integrable Hamiltonian systems, we prove the regularity of deformations of the Lagrangian asymptotic submanifolds in a vicinity of the hyperbolic periodic orbit.  相似文献   

4.
The G-functions for discontinuous dynamical systems are introduced to investigate singularity in discontinuous dynamical systems. Based on the new G-function, the switchability of a flow from a domain to an adjacent one is discussed. Further, the full and half sink and source, non-passable flows to the separation boundary in discontinuous dynamical systems are discussed. A flow to the separation boundary in a discontinuous dynamical system can be passable or non-passable. Therefore, the switching bifurcations between the passable and non-passable flows are presented. Finally, the first integral quantity increment for discontinuous dynamical systems is given instead of the Melnikov function to develop the iterative mapping relations.  相似文献   

5.
This is the first part of a review of the scientific works of L.P. Shilnikov. We group his papers according to 7 major research topics: bifurcations of homoclinic loops; the loop of a saddle-focus and spiral chaos; Poincare homoclinics to periodic orbits and invariant tori, homoclinic in noautonous and infinite-dimensional systems; Homoclinic tangency; Saddlenode bifurcation — quasiperiodicity-to-chaos transition, blue-sky catastrophe; Lorenz attractor; Hamiltonian dynamics. The first two topics are covered in this part. The review will be continued in the further issues of the journal.  相似文献   

6.
In this paper, bifurcation trees of periodic motions in a periodically forced, time-delayed, hardening Duffing oscillator are analytically predicted by a semi-analytical method. Such a semi-analytical method is based on the differential equation discretization of the time-delayed, nonlinear dynamical system. Bifurcation trees for the stable and unstable solutions of periodic motions to chaos in such a time-delayed, Duffing oscillator are achieved analytically. From the finite discrete Fourier series, harmonic frequency-amplitude curves for stable and unstable solutions of period-1 to period-4 motions are developed for a better understanding of quantity levels, singularity and catastrophes of harmonic amplitudes in the frequency domain. From the analytical prediction, numerical results of periodic motions in the time-delayed, hardening Duffing oscillator are completed. Through the numerical illustrations, the complexity and asymmetry of period-1 motions to chaos in nonlinear dynamical systems are strongly dependent on the distributions and quantity levels of harmonic amplitudes. With the quantity level increases of specific harmonic amplitudes, effects of the corresponding harmonics on the periodic motions become strong, and the certain complexity and asymmetry of periodic motion and chaos can be identified through harmonic amplitudes with higher quantity levels.  相似文献   

7.
The study of transitions in low dimensional, nonlinear dynamical systems is a complex problem for which there is not yet a simple, global numerical method able to detect chaos–chaos, chaos–periodic bifurcations and symmetry-breaking, symmetry-increasing bifurcations. We present here for the first time a general framework focusing on the symmetry concept of time series that at the same time reveals new kinds of recurrence. We propose several numerical tools based on the symmetry concept allowing both the qualification and quantification of different kinds of possible symmetry. By using several examples based on periodic symmetrical time series and on logistic and cubic maps, we show that it is possible with simple numerical tools to detect a large number of bifurcations of chaos–chaos, chaos–periodic, broken symmetry and increased symmetry types.  相似文献   

8.
We compare two finite difference schemes for Kolmogorov type of ordinary differential equations: Euler's scheme (a derivative approximation scheme) and an integral approximation (IA) scheme, from the view point of dynamical systems. Among the topics we investigate are equilibria and their stability, periodic orbits and their stability, and topological chaos of these two resulting nonlinear discrete dynamical systems.  相似文献   

9.
Dissipative perturbations of strongly nonlinear oscillators that correspond to slowly varying double-well potentials are considered. The method of averaging, which describes the solution as nearly periodic, fails as the trajectory approaches the unperturbed separatrix, a homoclinic orbit of the saddle point, significantly before it is captured in either well. Nevertheless, perturbed initial conditions corresponding to the boundary of the basin of attraction for each well, which are the perturbed stable manifolds of the saddle point, are accurately determined using only the method of averaging modified by Melnikov energy ideas near the separatrix. To determine the amplitude and phase of the captured oscillations after crossing the separatrix, a transition region is constructed consisting of a large sequence of nearly solitary pulses along the separatrix. The amplitude and phases of the slowly varying nonlinear oscillations away from the separatrix, both before and after capture, are matched to this transition region. In this way, analytic connection formulas across the separatrix are obtained and are shown to depend on the perturbed initial conditions.  相似文献   

10.
In this article, a brief stability analysis of equilibrium points in nonlinear fractional order dynamical systems is given. Then, based on the first integral concept, a definition of planar Hamiltonian systems with fractional order introduced. Some interesting properties of these fractional Hamiltonian systems are also presented. Finally, we illustrate two examples to see the differences between fractional Hamiltonian systems with their classical order counterparts.© 2014 Wiley Periodicals, Inc. Complexity 21: 93–99, 2015  相似文献   

11.
On the basis of the geometric ideas of Poincaré and Mel'nikov, we study sufficient criteria of the transversal splitting of heteroclinic separatrix manifolds of slowly perturbed nonlinear dynamical systems with a small parameter. An example of adiabatic invariance breakdown is considered for a system on a plane.Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 45, No. 12, pp. 1668–1681, December, 1993.  相似文献   

12.
In the present paper, we give a new treatment of the mechanism of generation of chaotic dynamics in a perturbed conservative system in a neighborhood of the separatrix contour of a hyperbolic singular point of the unperturbed system. We theoretically prove and justify by three numerical examples of classical Hamiltonian systems with one and a half degrees of freedom and by an example of a simply conservative three-dimensional system that the complication of the dynamics in a conservative system as the perturbation increases is caused by a nonlocal effect of multiplication of hyperbolic and elliptic cycles (and the tori surrounding them), which has nothing in common with the mechanism of separatrix splitting in classical Hamiltonian mechanics.  相似文献   

13.
In the first part of this work, the local singularity of non-smooth dynamical systems was discussed and the criteria for the grazing bifurcation were presented mathematically. In this part, the fragmentation mechanism of strange attractors in non-smooth dynamical systems is investigated. The periodic motion transition is completed through grazing. The concepts for the initial and final grazing, switching manifolds are introduced for six basic mappings. The fragmentation of strange attractors in non-smooth dynamical systems is described mathematically. The fragmentation mechanism of the strange attractor for such a non-smooth dynamical system is qualitatively discussed. Such a fragmentation of the strange attractor is illustrated numerically. The criteria and topological structures for the fragmentation of the strange attractor need to be further developed as in hyperbolic strange attractors. The fragmentation of the strange attractors extensively exists in non-smooth dynamical systems, which will help us better understand chaotic motions in non-smooth dynamical systems.  相似文献   

14.
The extended Melnikov method, which was used to solve autonomous perturbed Hamiltonian systems, is improved to deal with high-dimensional non-autonomous nonlinear dynamical systems. The multi-pulse Shilnikov type chaotic dynamics of a parametrically and externally excited, simply supported rectangular thin plate is studied by using the extended Melnikov method. A two-degree-of-freedom non-autonomous nonlinear system of the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach. The case of buckling is considered for the rectangular thin plate. The extended Melnikov method is directly applied to the non-autonomous governing equations of motion to investigate multi-pulse Shilnikov type chaotic motions of the buckled rectangular thin plate for the first time. The results obtained here indicate that multi-pulse chaotic motions can occur in the parametrically and externally excited, simply supported buckled rectangular thin plate.  相似文献   

15.
In this paper, we consider the nonlinear Schr\"{o}dinger equation with an anti-cubic nonlinearity. By using the method of dynamical systems, we obtain bifurcations of the phase portraits of the corresponding planar dynamical system under different parameter conditions. Corresponding to different level curves defined by the Hamiltonian, we derive all exact explicit parametric representations of the bounded solutions (including periodic peakon solutions, periodic solutions, homoclinic solutions, heteroclinic solutions and compacton solutions).  相似文献   

16.
In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing.  相似文献   

17.
The Poincare mapping and the corresponding mapping sections for global motions in a linear system possessing a dead-zone restoring force are introduced through switching planes pertaining to two constraints. The global periodic motions based on the Poincare mapping are determined, and the eigenvalue analysis for the stability and bifurcation of periodic motion is carried out. Global chaos in such a system is investigated numerically from the unstable global periodic motions analytically determined. The bifurcation scenario with varying parameters is presented. The mapping structures of periodic and chaotic motions are discussed. The Poincare mapping sections for global chaos are given for illustration. The grazing phenomenon embedded in chaotic motion is observed in this investigation.  相似文献   

18.
The free three-dimensional motion of an unbalanced gyrostat about the centre of mass is considered. The perturbed Hamiltonian for the case of small dynamical asymmetry of the rotor is written in Andoyer–Deprit canonical variables. The structure of the phase space of the unperturbed system is analysed, six forms of possible phase portraits are identified, and the equations of the phase trajectories are found analytically. Explicit analytical time dependences of the Andoyer–Deprit variables corresponding to heteroclinic orbits are obtained for all the phase portrait forms. The Melnikov function of the perturbed system is written for heteroclinic separatrix orbits using the analytical solutions obtained, and the presence of simple zeros is shown numerically. This provides evidence of intersections of the stable and unstable manifolds of the hyperbolic points and chaotization of the motion. Illustrations of chaotic modes of motion of the unbalanced gyrostat are presented using Poincaré sections.  相似文献   

19.
We study some monotonicity and iteration inequality of the Maslov-type index i-1of linear Hamiltonian systems.As an application we prove the existence of symmetric periodic solutions with prescribed minimal period for first order nonlinear autonomous Hamiltonian systems which are semipositive,even,and superquadratic at zero and infinity.This result gives a positive answer to Rabinowitz’s minimal period conjecture in this case without strictly convex assumption.We also give a different proof of the existence of symmetric periodic solutions with prescribed minimal period for classical Hamiltonian systems which are semipositive,even,and superquadratic at zero and infinity which was proved by Fei,Kim and Wang in 2001.  相似文献   

20.
An equivariant jet transversality framework is developed for the study of critical sets of invariant functions on G manifolds. Techniques are developed to extend transversality results to the infinite dimensional Fredholm setting. As an application, the generic structure of the SU(4) perturbed flat moduli space of an integral homology three-sphere is described, as well as the generic structure of the parameterized moduli space for a path of perturbations. A similar analysis of the U(3) moduli space for rational homology three-spheres is also carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号